文章目录数据分层好处数据运营层数据仓库层数据应用层事实表`(Fact Table)`维表层(`Dimension`)表命名规则聚合粒度以及加工频率字段说明抽取方式字段命名规范数据表名命名规范表分区字段说明任务命名规范大厂分层架构爱奇艺SaaS收银运营数仓分层架构美团数仓分层架构网易云音乐数仓分层架构 数据分层数据分层在建设数据仓库中是一个十分重要的环节,良好的数据分层能够使得数据仓库更容易理解和
转载
2023-10-18 20:33:58
130阅读
数据仓库概念的提出都要追溯到上世纪了,我们认为在大数据元年之前的数仓可以称为传统数仓,而后随着海量数据不断增长,以及Hadoop生态不断发展,主要基于Hive/HDFS的离线数仓架构可以兴起并延续至今,近几年随着Storm/Spark(Streaming)/Flink等实时处理框架的更新迭代乃至相互取代,各厂都在着力构建自己的实时数仓,特别是近两年,随着Flink声名鹊起,实时数仓更是名声在外并且
文章从六个方面介绍,首先是久耶第一代离线数仓以及第二代实时数仓。接下来介绍下公司业务场景和业务开发,基于 HBase 的开发流程,然后公司 CDH 集群调优监控,最后分享两个生产案例。第一代离线数仓是在去年三月份上线,主要是基于 OMS 和 WMS,由于分库分表,大约有十几个库。前期通过 SQOOP 进行数据抽取,后来由于 SQOOP 的一些问题采用了阿里开源的 DataX,时间粒度使用调度实
在大数据技术生态当中,Hive和Hbase无疑都是非常重要的两个组件,在实际的大数据处理任务当中,这两者也都不可或缺,尤其是在Hadoop基础架构的支撑下,这两者各自占据着重要地位。今天的大数据入门分享,我们就来讲讲Hive和Hbase区别对比。从本质上来说,Hive和Hbase本身定义就不一样,前者是基于Hadoop的数据库,后者是Hadoop的数据仓库。数据仓库,严格来说不是数据库。Hive与
转载
2023-08-11 23:55:56
32阅读
在谈数仓之前,先来看下面几个问题:数仓为什么要分层?用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据;不分层的话,如果源业务系统的业务规则发生变化将会影响整个数据清洗过程,工作量巨大。通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一个白盒,每一层的处理
what is hive官方文档The Apache Hive ™ data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data alre
目录前言:1.实时数仓1.02.实时数仓2.03实时数仓3.0 前言:数据处理现状:当前基于Hive的离线数据仓库已经非常成熟,数据中台体系也基本上是围绕离线数仓进行建设。但是随着实时计算引擎的不断发展以及业务对于实时报表的产出需求不断膨胀,业界最近几年就一直聚焦并探索于两个相关的热点问题:实时数仓建设和大数据架构的批流一体建设。1.实时数仓1.0传统意义上我们通常将数据处理分为离线数据处理和实
数据仓库架构分层1. 数据仓库架构数据仓库标准上可以分为四层:ODS(临时存储层)、PDW(数据仓库层)、DM(数据集市层)、APP(应用层)。1)ODS层:为临时存储层,是接口数据的临时存储区域,为后一步的数据处理做准备。一般来说ODS层的数据和源系统的数据是同构的,主要目的是简化后续数据加工处理的工作。从数据粒度上来说ODS层的数据粒度是最细的。ODS层的表通常包括两类,一个用于存储当前需要加
文章目录15.0 数仓搭建-DWT层15.1 访客主题15.2 用户主题15.3 商品主题15.4 优惠券主题15.5 活动主题15.6 地区主题15.7 DWT层首日数据导入脚本15.8 DWT层每日数据导入脚本 15.0 数仓搭建-DWT层15.1 访客主题1)建表语句DROP TABLE IF EXISTS dwt_visitor_topic;
CREATE EXTERNAL TABLE
概述分层模型设计ODS层设计DWD层设计DIM层设计DWS层设计ADS层设计 概述 上一篇主要阐述了 OneData 建模体系中的规范定义部分,而本篇主要阐述的是分层模型设计部分。当了解到每一个业务过程与维度的关联,就可以基本明确需要设计事实表与维度表;再通过明确统计指标的深入分析,就可以下沉某些相同计算逻辑。这是数仓的基本架构雏形已明确,而接下来则是设计各个表如何设计。例如:什么样的表放
一、数仓的意义为什么要有数据仓库 说起数据仓库存在的意义就必须得说企业面临的数据问题。结构复杂
数据脏乱
理解困难
缺少历史
总结一句话就是:多源异构、脏乱差的数据现象。数据仓库的价值体现效果
诊断
预警二、数据体系数据体系构成常见技术架构 偏离线:适用于业务初期,迅速形成数仓雏形,快速交付满足业务 离线+实时:适合业务中后期,形成扩展性极强的技术架构 偏实时:适合特殊业务,例如:广告
最近我们公司在建立数仓,想要建立一套以Greenplum为核心的混合架构数据仓库。在这里,只想谈谈我对数据仓库的一些看法。什么是数据仓库面向主题的,集成的,相对稳定的,反映历史变化的数据集合,用于支持管理决策。 为什么需要数仓首先,我们公司是做高校大数据的。高校的数据源形式多样,oracle、sqlserver、mysql,excel、dbf等等,异构性强。以前我们的做法是将
今天我们来聊聊在数仓模型中举足轻重的维度建模。简单而言,数据仓库的核心目标是为展现层提供优质服务。其中包含ETL过程、数仓规范、数仓分层等建设流程,最终提供更清晰易用的展现层。维度建模的领域主要适用于数据集市层,它的最大的作用其实是为了解决数据仓库建模中的性能问题。1 数仓架构原则 在谈论维度模型前,我们先来聊聊数仓架构。数仓模型不只是考虑如何设计和实现功能,设计原则应该从访问性能、数据成本、使用
作者:数据一哥 编辑:数据一哥全文共1404个字,建议阅读4分钟大家好,我是一哥。今天跟大家聊一聊数仓为什么分层?01经典的数仓分层首先跟大家聊一个经典的数仓分层结构,主要包括ODS、DWS、DW、APP四层。ODS:抽取的原始业务数据,结构一般和原始业务数据库表结构或者抽取的业务日志数据结构保持一致。一句话:从业务系统增量抽取,数据不做清洗转换,与业务系统数据模型保持一致。DWS:根据ODS层,
数据仓库的项目的概况1. 项目适用于哪些行业? 线上的互联网行业,例如淘宝,安居客等等2. 我准备选择一个什么样的业务公司来写这个项目? 我准备选择一个线上的互联网公司根据公司所产生的埋点日志数据和业务数据做数仓项目3. 项目中主要开发哪些模块?分别有什么用途? 数据仓库 用户画像 个性推荐 数仓:数据存储运算, 用户画像:根据埋点数据给用户贴标签 个性推荐:根据用户画像,精准的给用户进行精准投放
文章目录1. 什么是指标体系1.1. 指标体系定义1.2. 指标体系生命周期1.3. 综合使用场景2.为什么搭建指标体系3.何搭建指标体系3.1. 科学方法选指标3.2 用分析模型搭建指标体系3.3 场景化搭建指标体系3.3.1 人的视角3.3.2 货的视角3.3.3 场的视角 指标体系是什么?如何使用OSM模型和AARRR模型搭建指标体系?如何统一流程、规范化、工具化管理指标体系?本文会对建设
数仓分层的概念由于我们做数据分析,大体上在数仓中都是迭代的计算,这种计算就会分层次来进行。这种迭代,通用可以分为3个层级:ODSDWADSODS层Original data service原始数据层记录的是输入数据仓库数据的原始的样子或者经过少量的修改的样子基本上是和来源的地方一致作用:一种数据备份,数据溯源(迭代计算的起点)DW层Data Warehouse数据仓库层在这个层级内就开始进行数据的
转载
2023-11-02 00:05:29
137阅读
数仓规划建议1、将数仓平台账号收归统一管理,防止出现同一张业务表被重复同步到数仓平台或者自己的业务流程被别人误运行。(有些业务流程是不能被重复运行的) 2、对数仓平台的表命名进行统一规范。针对ods、dw、ads 层级最好加上对应前缀,方便区分层级和分析。针对ods层,因为这个是拉取业务系统的表,我们业务系统非常多和复杂,所以我们是会加上库名_t_表名。 3、对目前的存在的表进行排查,同一张业务表
数仓概念定义数据仓库是一个面向主题的、集成的、随时间变化的、但信息本身相对稳定的数据集合,用于对管理决策过程的支持。(看不懂接着往后看)数仓和数据库 数据库:二维表以及表中全部字段。表与表之间存在关系(可以是多维关系),所以常见的数据库都是用来做业务数据库。而业务数据库中的数据结构是为了完成业务而设计的,数据流和业务流高度重合 -- 清晰的存储
转载
2023-10-15 15:53:13
87阅读
数据仓库更多代表的是一种对数据的管理和使用的方式,它是一整套包括了etl、调度、建模在内的完整的理论体系。现在所谓的大数据更多的是一种数据量级的增大和工具的上的更新。 两者并无冲突,相反,而是一种更好的结合。ODS全称是Operational Data Store,操作数据存储;这一层面的数据却不等同于原始数据。在源数据装入这一层时,要进行诸如去噪(例如去掉明显偏离正常水平的银行刷卡信息)、去重(