# 在Hadoop中实现KMeans算法的完整指南
KMeans是一种常用的聚类算法,它通过迭代分配数据点到不同的聚类中心来实现数据分组。Hadoop提供了一个强大的工具集,用于大规模数据处理,在Hadoop环境中实现KMeans算法不仅可以加速计算,还可以处理海量数据。本文将引导您如何在Hadoop上实现KMeans算法,包括流程、代码示例和图示。
## 实现流程
我们可以将实现KMean
温馨提示:如果使用电脑查看图片不清晰,可以使用手机打开文章单击文中的图片放大查看高清原图。 1文章编写目的JMX(Java Management Extensions,即Java管理扩展)做Java开发的人都比较熟悉,它提供了一种在运行时动态资源的监控指标。JMX主要用于配置和监控资源状态,使用它可以监视和管理Java虚拟机。本篇文章Fayson主要介绍如何使用Cloudera Manager为H
转载
2024-01-23 23:02:38
48阅读
参考了的代码。不过他的代码细节上有点问题。主要在于对于质心的处理上,他的代码中将前面的序号也作为数据进行求距离,但是这里是不用的。 kmeans基本思想就是在一个点集中随机选取k个点作为初始的质心,然后在以这K个点求点集中其他点和这质心的距离,并且按照最近的原则,将这个点集分成k个类,接着在这k个类中求其质心,接着便是迭代,一直到质心不变或者SSE小于某个阈值或者达到指定的迭代次数。不过
转载
2024-06-26 15:34:46
53阅读
$mahout seqdumper -i output/clusters-1/part-r-00000直接在控制台上显示,要写入文件可以在后面加上-o <输出路径> mahout中的kmeans结果分析
运行官网上的mahout kmeas示例,结果文件夹有clusteredPoints,clusters-N,
转载
2024-08-12 19:01:37
43阅读
MR是分布式数据处理工具,在处理大数据的时候,会消耗占用大量的资源YARN(资源管理) =》MR若没有一个相应的角色对于资源使用情况进行管理,有可能会造成资源的冲突或者浪费对于1T的文件内容进行排序问题?1、安装大小切割成快,会造成字符被切碎了 2、按照行数切割(每10万行切割一次)(一次IO)3、切割之后,经过服务器的处理,每一个小文件内部有序,但是小文件之间无序 
转载
2023-07-12 13:33:31
82阅读
Kmeans原理介绍聚类介绍聚类kmeans 算法是一个无监督学习过程。一般是用来对数据对象按照其特征属性进行分组。经常被应用在客户分群、欺诈检测、图像分析领域。K-means是最有名并且最经常使用的聚类算法算法介绍:KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇,然后按照平均法重新计算各个簇的质心,从而确定簇心,一直迭代,直到簇心的移动距离小于某个给定
转载
2023-12-31 16:58:50
28阅读
刚刚研究了Kmeans。Kmeans是一种十分简单的聚类算法。可是他十分依赖于用户最初给定的k值。它无法发现随意形状和大小的簇。最适合于发现球状簇。他的时间复杂度为O(tkn)。kmeans算法有两个核心点:计算距离的公式&推断迭代停止的条件。一般距採用欧式距离等能够随意。推断迭代停止的条件能够有:1) 每一个簇的中心点不再变化则停止迭代2)全部簇的点与这个簇的中心点的误差平方和(SSE)
转载
2023-05-26 23:49:52
93阅读
上了斯坦福Andrew NG 课,把所有的练习用matlab 做完一遍之后感觉意犹未尽,因此决定用pyton 将课内算法逐一实现一遍,以加深理解,同时也避免自己成为调包侠,哈哈,话不多说,进入正题。 Kmeans 是一个经典的无监督聚类算法,算法内容比较容易理解。有兴趣的同学可以百度相关论文研读其内容,这里不再赘述。 Kmeans 算法流程如下: Input: -K (聚类数目,即所需分类的
转载
2023-10-13 11:43:28
54阅读
Kmeans算法及简单案例Kmeans算法流程选择聚类的个数k.任意产生k个聚类,然后确定聚类中心,或者直接生成k个中心。对每个点确定其聚类中心点。再计算其聚类新中心。重复以上步骤直到满足收敛要求。(通常就是确定的中心点不再改变。)Kmeans算法流程案例将下列数据点用K-means方法进行聚类(这里使用欧式距离作为度量,K取值为2) P1~P15这15个数据点的二维坐标图如下:指定P1、P2为初
转载
2023-08-25 16:25:56
167阅读
kudu 1.7官方:https://kudu.apache.org/ 一 简介kudu有很多概念,有分布式文件系统(HDFS),有一致性算法(Zookeeper),有Table(Hive Table),有Tablet(Hive Table Partition),有列式存储(Parquet),有顺序和随机读取(HBase),所以看起来kudu是一个轻量级的 HDFS + Zookeepe
转载
2023-05-29 15:40:55
83阅读
# 使用Hadoop实现K-means算法
作为一名经验丰富的开发者,我很高兴能够教你如何使用Hadoop实现K-means算法。下面将详细介绍整个过程,并提供每个步骤所需的代码和注释。
## K-means算法概述
K-means算法是一种常用的聚类算法,用于将一组数据点分成K个不同的簇。该算法的基本思想是通过迭代优化迭代中心点的位置,使得每个数据点到最近的中心点的距离最小化。
## 实现
原创
2023-08-01 10:43:52
182阅读
1.MATLAB函数Kmeans使用方法:Idx=Kmeans(X,K)[Idx,C]=Kmeans(X,K) [Idx,C,sumD]=Kmeans(X,K) [Idx,C,sumD,D]=Kmeans(X,K) […]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…)各输入输出参数介绍:X: N*P的数据矩阵,N为数据个数,P为单个数
转载
2024-01-15 19:11:21
44阅读
并对其内容进行了补充和完善,使代码可以直接运行,运算的原始数据由随机数产生。图示为3个簇,1000个二维变量的分类结果主程序:import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import
转载
2023-06-01 10:33:55
89阅读
kmeans是最著名的聚类算法,聚类算法就是计算种群中的距离,根据距离的远近将数据划分为多个族群。kmeans算法首先需要确定k的数量,即全部样本所包含类别的数量。然后选择k个初始中心点,之后我们计算所有样本点与k个中心点之间的距离,对于任意一个样本点,它与哪个中心点距离最小我们就将其分配到该中心点所在类。完成所有样本点的分配后将重新计算中心点。重复上述过程,比较样本点与中心点的距离并将样本点重新
转载
2023-11-02 06:15:22
162阅读
hadoop是什么?Hadoop是一个开源的框架,可编写和运行分不是应用处理大规模数据,是专为离线和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式。Hadoop=HDFS(文件系统,数据存储技术相关)+ Mapreduce(数据处理),Hadoop的数据来源可以是任何形式,在处理半结构化和非结构化数据上与关系型数据库相比有更好的性能,具有更灵活的处理能力,不管任何数据形式
转载
2023-08-16 17:58:43
22阅读
简单来讲,聚类就是在还没有类别的情况下,将物体经过算法自动归为不同的类。而分类是已知类别的情况下,将物体分到不同的类中。这个类别就是标签,所以聚类也可以视作无监督分类算法,这个监督就是指有没有提前认为分好类别。概述KMeans算法也叫K均值算法,是最常用的聚类算法,主要思想是:在给定K值和随机初始K个中心点的情况下,把每个点(假设是二维数据)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之
转载
2023-12-12 11:53:52
94阅读
# Java 中 K-Means 聚类算法的简单实现
K-Means 是一种广泛应用的无监督学习算法,用于数据的聚类分析。其主要思想是将数据集分为 K 个簇,使得簇内的数据点尽可能相似,而簇间的数据点尽可能不同。在这篇文章中,我们将通过 Java 示例来讲解 K-Means 聚类算法的基本实现,并用相应的图示来展示其工作原理。
## K-Means 算法的基本步骤
K-Means 算法的工作
# 使用Python实现K-Means算法的指南
K-Means是一种常用的聚类算法,它可以将数据分成若干个不同的组。若你是一名刚入行的开发者,下面将带你逐步了解如何在Python中实现K-Means算法。我们将首先概述整个流程,并在接下来的部分中逐步解析每个步骤所涉及的代码。
## K-Means算法实现流程
以下表格展示了实现K-Means算法的主要步骤:
| 步骤 | 描
import matplotlib.pyplot as plt #画图用 import random import copy import operator #判断列表相等 k=2 #簇数量 data=[(1,2),(2,3),(2,4),(3,3),(10,16)] def show(x): fo
原创
2022-09-10 00:59:19
129阅读
K-means算法简介K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低。K-menas的优缺点:优点:原理简单速度快对大数据集有比较好的伸缩性缺点:需要指定聚类 数量K对异常值敏感对初始值敏感K-means的聚类过程其聚类过程类似于梯度下降算法,建立代价函数并通过
转载
2024-08-29 22:46:57
107阅读