# 使用PyTorch实现LSTM时间序列预测 时间序列预测是机器学习中的一个重要应用领域。LSTM(长短期记忆网络)是一种强大的递归神经网络(RNN),适合处理和预测序列数据。本文将指导你如何使用PyTorch实现一个LSTM时间序列预测模型,并提供详细的步骤、代码示例及解释。 ## 整体流程 我们将整个过程分为以下几个步骤: | 步骤 | 描述
原创 2024-08-26 04:36:02
57阅读
Long Short-Term Memory networks(长-短期记忆网络),简称 LSTMs,可用于时间序列预测。有许多类型的LSTM模型可用于每种特定类型的时间序列预测问题。本文介绍了如何为一系列标准时间序列预测问题开发一套LSTM模型。本文旨在为每种类型的时间序列问题提供所对应模型的示例,你可以依此为模板,针对自己的业务需求进行修改。本文的主要内容为:如何开发适用于单变量时间序列预测的
快速梳理LSTM(Long Short-Term Memory)长短期记忆人工神经网络是对RNN的一种改进,可以有效解决RNN存在的长期依赖问题。下图展示了LSTM的网络结构,我们可以看到其中有许多奇怪的部分,被称之为“门”。下面就具体介绍一下遗忘门,输入门和输出门以及重要的细胞状态(Cell)。遗忘门遗忘门(Forget gate)顾名思义,是用来控制模型以多少比例或者说概率“遗忘”存贮在细胞\
转载 2021-04-21 10:57:34
3780阅读
2评论
train data file_num1 file_num2 type num5 20180927151119 1 1-100 holdsafetybelt_f6 20180927151505 2 101-200 holdsafetybelt_b 7 20180927151745 5 201-300
转载 2018-10-25 19:24:00
259阅读
2评论
Training iter #122180: Batch Loss = 0.516407, Accuracy = 0.8109999895095825
转载 2019-04-28 14:21:00
144阅读
2评论
LSTM 针对RNN网络中存在的问题,我们升级出LSTM网络。 核心是控制参数Ct如何更新。 LSTM可以做自然语言处理,序列化预测的问题。
原创 2021-07-22 09:53:50
347阅读
LSTM
原创 2021-08-02 15:24:14
510阅读
1.原始RNN的问题 RNN 面临的较大问题是无法解决长跨度依赖问题,即后面节点相对于跨度很大的前面时间节点的信息感知能力太弱 。 如 图 2.1.1( 图 片 来 源 :https://www.jianshu.com/p/9dc9f41f0b29)中的两句话:左上角的句子中 sky 可以由较短跨度
转载 2020-08-27 11:14:00
250阅读
1点赞
2评论
LSTM网络LSTM网络和传统MLP是不同的。像MLP,网络由神经元层组成。输入数据通过网络传播以进行预测。与RNN一样,LSTM具有递归连接,使得来自先前时间步的神经元的先前激活状态被用作形成输出的上下文。和其他的RNN不一样,LSTM具有一个独特的公式,使其避免防止出现阻止和缩放其他RNN的问题。这,以及令人影响深刻的结果是可以实现的,这也是这项技术得以普及的原因。RNNs一直以来所面临的一个
转载 2024-02-19 11:40:37
262阅读
目标本文的目标是解释一个可用于构建基本LSTM模型的简单代码。我不会讨论和分析结果。这只是为了让您开始编写代码。设置环境我将在本文中使用python编写LSTM代码。环境设置如下:我建议您下载pycharm IDE并通过IDE将Tensorflow和所有其他库下载到您的项目中。您可以按照以下步骤设置环境。下载PyCharm IDE创建一个项目将Tensorflow,NumPy,SciPy,scik
转载 2023-10-14 22:03:41
164阅读
一、LSTM网络long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层LSTM也有与RNN相似的循环结构,但是循环模块中不再是简单的网络,而是比较复杂的网络单 元。LSTM的循环模块主要有4个单元,以比较复杂的方式进行
PERFORMANCE ON TEST SET: Batch Loss = 0.6423985362052917, Accuracy = 0.9051185846328735 Training iter #584292: Batch Loss = 0.357018, Accuracy = 0.966
转载 2019-04-07 20:52:00
163阅读
2评论
LSTM的介绍,通俗易懂:https://zhuanlan.zhihu./p/32085405 keras LSTM实战:Keras进行LSTM实战
原创 2022-01-17 16:30:45
211阅读
1.入门必看:万字长文带你轻松了解LSTM全貌 https://mp.weixin.qq.com/s?_
f5
原创 2022-10-13 10:10:32
209阅读
一 、单向LSTM0.导入包import torch1.rnn = torch.nn.LSTM(input_size,hidden_size,num_layers)rnn = torch.nn.LSTM(10, 20, 2) #(input_size,hidden_size,num_layers)括号里面第一个参数input_size是输入向量的长度,第二个参数hidden_size是隐藏层向量
转载 2023-10-08 11:42:10
170阅读
LSTM上节讲到的RNN循环神经网络有一个弊端,无法处理长距离依赖的问题,而RNN的变种长短时记忆网络(Long Short Term Memory Network, LSTM),可以解决这个问题。 原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。LSTM在此基础上又增加一个状态,即c,让它来保存长期的状态,称为单元状态(cell state)。 新增加的状态c,称为单元状态。我们
LSTM的参数解释LSTM总共有7个参数:前面3个是必须输入的1:input_size: 输入特征维数,即每一行输入元素的个数。输入是一维向量。如:[1,2,3,4,5,6,7,8,9],input_size 就是92:hidden_size: 隐藏层状态的维数,即隐藏层节点的个数,这个和单层感知器的结构是类似的。这个维数值是自定义的,根据具体业务需要决定,如下图:input_size:就是输入层
转载 2023-08-06 13:59:19
485阅读
一、LSTM原理介绍   RNN虽然理论上也能循环处理长序列,但是由于其结构简单,单元里面只是一个基于tanh激活函数的前馈网络在循环,对于长序列中的哪些信息需要记忆、哪些序列需要忘记,RNN是无法处理的。序列越长,较早的信息就应该忘记,由新的信息来代替,因为上下文语境意境发生了变化,既然RNN无法处理该忘记的信息,那么RNN就不能应用倒长序列中。  而LSTM之所以能够处理长的序列,是
目录程序简介程序/数据集下载代码分析程序简介程序调用tensorflow.keras搭建了一个简单长短记忆型网络(LSTM),以上证指数为例,对数据进行标准化处理,输入5天的'收盘价', '最高价', '最低价','开盘价',输出1天的'收盘价',利用训练集训练网络后,输出测试集的MAE长短记忆型网络(LSTM):是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题。程序/数据集
转载 2023-11-29 21:29:48
14阅读
首先,我们定义好一个LSTM网络,然后给出一个句子,每个句子都有很多个词构成,每个词可以用一个词向量表示,这样一句话就可以形成一个序列,我们将这个序列依次传入LSTM,然后就可以得到与序列等长的输出,每个输出都表示的是一种词性,比如名词,动词之类的,还是一种分类问题,每个单词都属于几种词性中的一种。我们可以思考一下为什么LSTM在这个问题里面起着重要的作用。如果我们完全孤立的对一个词做词性的判断这
  • 1
  • 2
  • 3
  • 4
  • 5