# 使用PyTorch实现LSTM时间序列预测
时间序列预测是机器学习中的一个重要应用领域。LSTM(长短期记忆网络)是一种强大的递归神经网络(RNN),适合处理和预测序列数据。本文将指导你如何使用PyTorch实现一个LSTM时间序列预测模型,并提供详细的步骤、代码示例及解释。
## 整体流程
我们将整个过程分为以下几个步骤:
| 步骤 | 描述
原创
2024-08-26 04:36:02
57阅读
4.Architectural Details 构建卷积层时,需要决定过滤器的大小究竟是1×1,3×3还是5×5,或者要不要添加池化层。而Inception网络的作用就是代替你来决定,虽然网络架构因此变得更加复杂,但网络表现却非常好。例如,这是28×28×192维度的输入层如果使用1×1卷积,输出结果会是28×28×#(某个值),假设输出为28×28×64,并且这里只有一个层(一个层是指
文章目录 一、智能进化算法-LSTM(优化超参数)1.金枪鱼算法TSO-LSTM——案例12.孔雀优化算法(POA)-LSTM——案例13.猎人优化算法(HPO)-LSTM——案例14.人工大猩猩部队优化算法(GTO)-LSTM——案例1
5.象鼻虫算法(WOA)-LSTM——案例2(负荷预测并与PSO-LSTM/LSTM对比)
6.草原犬鼠算法(PDO)-LSTM——案例2(负荷预测并与PSO-
Long Short-Term Memory networks(长-短期记忆网络),简称 LSTMs,可用于时间序列预测。有许多类型的LSTM模型可用于每种特定类型的时间序列预测问题。本文介绍了如何为一系列标准时间序列预测问题开发一套LSTM模型。本文旨在为每种类型的时间序列问题提供所对应模型的示例,你可以依此为模板,针对自己的业务需求进行修改。本文的主要内容为:如何开发适用于单变量时间序列预测的
用于时间序列分类的LSTM+FCN网络(Long short-term Memory+Fully Convolutional Networks)
原创
2022-11-16 19:27:06
388阅读
基础知识Q1:什么是时间序列?**A1:**时间序列是一组按时间顺序的数字序列,它既
原创
2022-11-16 19:27:07
232阅读
生产环境灵活、高性能机器学习模型服务系统。适合基于实际数据大规模运行,产生多个模型训练过程。可用于开发环境、生产环境。模型生命周期管理。模型先数据训练,逐步产生初步模型,优化模型。模型多重算法试验,生成模型管理。客户端(Client)向TensorFlow Severing请求模型,TensorFlow Severing返回适当模型给客户端。TensorFlow Serving、gRP
在过去的几十年里,多变量时间序列分类问题引起了广泛的关注。我们提出转换现存。
原创
2022-11-16 19:26:59
677阅读
文章目录记录本次操作过程症状描述修改host找到目录下的文件:尝试是否能够ping通关闭代理(以前可能设置过,关闭它保险)重启终
原创
2022-06-14 17:06:55
1758阅读
快速梳理LSTM(Long Short-Term Memory)长短期记忆人工神经网络是对RNN的一种改进,可以有效解决RNN存在的长期依赖问题。下图展示了LSTM的网络结构,我们可以看到其中有许多奇怪的部分,被称之为“门”。下面就具体介绍一下遗忘门,输入门和输出门以及重要的细胞状态(Cell)。遗忘门遗忘门(Forget gate)顾名思义,是用来控制模型以多少比例或者说概率“遗忘”存贮在细胞\
转载
2021-04-21 10:57:34
3780阅读
2评论
train data file_num1 file_num2 type num5 20180927151119 1 1-100 holdsafetybelt_f6 20180927151505 2 101-200 holdsafetybelt_b 7 20180927151745 5 201-300
转载
2018-10-25 19:24:00
259阅读
2评论
Training iter #122180: Batch Loss = 0.516407, Accuracy = 0.8109999895095825
转载
2019-04-28 14:21:00
144阅读
2评论
LSTM 针对RNN网络中存在的问题,我们升级出LSTM网络。 核心是控制参数Ct如何更新。 LSTM可以做自然语言处理,序列化预测的问题。
原创
2021-07-22 09:53:50
347阅读
LSTM
原创
2021-08-02 15:24:14
512阅读
PERFORMANCE ON TEST SET: Batch Loss = 0.6423985362052917, Accuracy = 0.9051185846328735 Training iter #584292: Batch Loss = 0.357018, Accuracy = 0.966
转载
2019-04-07 20:52:00
163阅读
2评论
LSTM的介绍,通俗易懂:https://zhuanlan.zhihu./p/32085405 keras LSTM实战:Keras进行LSTM实战
原创
2022-01-17 16:30:45
211阅读
1.入门必看:万字长文带你轻松了解LSTM全貌 https://mp.weixin.qq.com/s?_
原创
2022-10-13 10:10:32
209阅读
1.原始RNN的问题 RNN 面临的较大问题是无法解决长跨度依赖问题,即后面节点相对于跨度很大的前面时间节点的信息感知能力太弱 。 如 图 2.1.1( 图 片 来 源 :https://www.jianshu.com/p/9dc9f41f0b29)中的两句话:左上角的句子中 sky 可以由较短跨度
转载
2020-08-27 11:14:00
250阅读
点赞
2评论
一 、单向LSTM0.导入包import torch1.rnn = torch.nn.LSTM(input_size,hidden_size,num_layers)rnn = torch.nn.LSTM(10, 20, 2) #(input_size,hidden_size,num_layers)括号里面第一个参数input_size是输入向量的长度,第二个参数hidden_size是隐藏层向量
转载
2023-10-08 11:42:10
170阅读
LSTM上节讲到的RNN循环神经网络有一个弊端,无法处理长距离依赖的问题,而RNN的变种长短时记忆网络(Long Short Term Memory Network, LSTM),可以解决这个问题。 原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。LSTM在此基础上又增加一个状态,即c,让它来保存长期的状态,称为单元状态(cell state)。 新增加的状态c,称为单元状态。我们
转载
2023-12-01 13:27:42
91阅读