首先通过摄像头采集图像,用Otsu方法进行二值化处理,然后找出最大两个连通区域,此处默认有手和脸,最后通过指尖检测算法,将脸部排除。
1 #include "cxcore.h"
2 #include "math.h"
3 #include <cmath>
4 #include <vector>
5 #include <stdio.h>
6
转载
2024-06-08 16:16:17
19阅读
1.肤色检测 肤色检测技术利用了计算机对人体皮肤像素的分析过程,随着人脸检测技术,表情识别及手势识别等技术的快速发展,肤色应用领域日趋增多。肤色检测技术常用的方法有基于颜色空间、光谱特征以及肤色反射模型等方法,这些方法的主要步骤先进行颜色空间变换,然后再建立肤色模型。肤色检测中颜色空间有RGB、YCrCb、HSV和Lab等,通常在处理的时候是将RGB颜色空间变换成相应的颜色空间,对某种类型的图像
转载
2023-08-13 15:41:35
195阅读
在日常生活中我们表示颜色的时候都喜欢用RGB模型进行表示,RGB分别代表了三原色:红色Red, 绿色Green,蓝色Blue。但是当我们想要从图片中选取某种颜色的时候,比如说红色,用RGB该怎么做?很难啊。所以当涉及到颜色的时候我们通常都会将图片转化到hsv空间进行表示。这个模型中颜色的参数分别是:色调(H),饱和度(S),明度(V)。那么该如何选择我们需要的颜色呢?比如说红色,是否就只需要选择一
转载
2024-05-10 18:03:38
40阅读
//第一种:RGB c
原创
2022-04-11 13:40:43
410阅读
//第一种:RGB color space 【效果挺好】// skin region location using rgb limitationvoid ImageSkin::ImageSkinRGB(const Mat& rgb, Mat& _dst){ assert(rgb.channels() == 3 && _dst.channels() == 3); static
原创
2021-12-22 11:20:26
476阅读
先贴代码
1. void cvSkinSegment(IplImage* img, IplImage* mask){
2. CvSize imageSize = cvSize(img->width, img->height);
3. IplImage *imgY = cvCreateImage(imageSize, IPL_DEPTH_8U,
转载
2024-08-29 17:41:25
39阅读
目录一、均值滤波(使用模板内所有像素的平均值代替模板中心像素灰度值)二、中值滤波(计算模板内所有像素中的中值,并用所计算出来的中值体改模板中心像素的灰度值)三、高斯滤波(对图像邻域内像素进行平滑时,邻域内不同位置的像素被赋予不同的权值)四、双边滤波(比高斯滤波多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,以达到保边去噪目的)以下是四种平滑处理滤波算法一、均值滤波(使用模板内所有像
转载
2024-08-12 17:12:29
32阅读
本篇文章通过调用opencv里的函数简单的实现了对图像里特定颜色提取与定位,以此为基础,我们可以实现对特定颜色物体的前景分割与定位,或者特定颜色线条的提取与定位 主要步骤:将RGB图像转化为HSV,H表示色调(度数表示0-180),S表示饱和度(取值0-255),V表示亮度(取值0-255),不同的颜色有着不同的取值范围,一般给出如下:设定待提取颜色的HSV范围值,然后调用inRange函数实现对
转载
2023-10-20 14:31:45
9阅读
-不管三七二十一,先上代码-读取需要掌握的函数# 相关函数#
翻译
2022-11-01 16:52:12
696阅读
本篇博客讲述对图像进行均值滤波,中值滤波,高斯滤波,高斯边缘检测滤波的意义在于:刚获得的图像有很多噪音。这主要由于平时的工作和环境引起的,图像增强是减弱噪音,增强对比度。想得到比较干净清晰的图像并不是容易的事情。为这个目标而为处理图像所涉及的操作是设计一个适合、匹配的滤波器和恰当的阈值。 (1) 均值滤波器:最简单均值滤波器是局部均值运算,即每一个像素只用其局部邻域内所有值的平均值来置换. (2)
转载
2024-05-08 13:31:18
50阅读
一、高斯平滑(模糊)def gaussian_blur(image):
# 设置ksize来确定模糊效果
img = cv.GaussianBlur(image, (5, 5), 0)
cv.imshow('img', img)
# 不通过ksize来设置高斯核大小,通过设置高斯分布公式中的sigma
img2 = cv.GaussianBlur(imag
转载
2023-08-02 23:29:53
37阅读
高斯是德国著名数学家、物理学家、天文学家、几何学家,有“数学王子”的美誉。18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。在高斯19岁时,仅用尺规便构造出了17边形。并为流传了20
转载
2024-09-05 11:20:54
17阅读
模糊原理:1. 模糊原理和上几节说的图像掩模矩阵有很多相似的地方,都是拿一个矩阵(3X3, 5X5)等,和原图从左向右从上到下分别进行卷积,将卷积值最后赋值个当前卷积的中心像素。2. 那么其最关键的参数,也就在于矩阵的大小和矩阵的值,我们通常称矩阵为卷积核。3. 模糊操作的重要原因之一也是为了给图像预处理时降低噪声。卷积示意图:均值模糊:均值模糊,也称为均值滤波,相当于卷积核的矩阵值全部为1/(卷
转载
2024-03-26 12:32:56
101阅读
目录 1、高斯噪声2、椒盐噪声3、模糊操作1、高斯噪声顾名思义指服从高斯分布(正态分布)的一类噪声,通常是因为不良照明和温度引起的传感器噪声。通常在RGB图像中,显现比较明显。如图:高斯噪声+模糊/高斯滤波操作:def clamp(pv):
if pv>255:
return 255
elif pv<0:
return 0
else:
return pv
转载
2023-11-06 12:53:52
120阅读
申明:以下内容为笔者翻译自国际会议论文,鉴于本人水平有限,翻译难免有误,请大家多多包容。原文为:An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection;
转载
2024-04-22 20:55:10
28阅读
皮肤检测与抠图皮肤检测的方法很多,这里写的是最简单的方法,感兴趣的同学可以自己加上椭圆检测,膨胀腐蚀等,使得检测与抠图更加精确。github上许多人脸识别的算法,可以多学习那些。HSV颜色空间hsv涉及心理学的颜色知识,比rgb检测具有更好的分类效果python 代码def get_skin_hsv(img)
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2H
转载
2024-04-17 20:49:33
553阅读
首先写一下对图像频率的一些理解:简单一点说,图像中的高频分量,指的是图像强度(亮度/灰度)变化剧烈的地方,也就是我们常说的边缘(轮廓);图像中的低频分量,指的是图像强度(亮度/灰度)变换平缓的地方。那么保留高频就是高通滤波器(边缘提取),保留低频就是低通录波器(图像平滑)。高斯滤波器可以使图像边缘变得平滑,它是一种低通滤波器。高斯滤波高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。而高斯
转载
2024-02-18 20:27:43
113阅读
基于opencv3.4.7 编程环境win10+VS2017、ubuntu18.04+Codelite概述图像处理中,常用的滤波算法有均值滤波、中值滤波以及高斯滤波等。GaussianBlur()函数用高斯滤波器GaussianFilter对图像进行平滑处理。 该函数将源图像与指定的高斯内核进行卷积,同时也支持in-place滤波。 原理通过2维高斯滤波函数计算出中心点周围每个点的权重分布,经归一
转载
2024-03-26 23:32:37
66阅读
YOLACT,全称为:You Only Look At CoefficienTs,从标题可以看出这个模型的名称有些致敬YOLO的意思。YOLACT是2019年ICCV会议论文,它是在现有的一阶段(one-stage)目标检测模型里添加掩模分支。而经典的mask-rcnn是两阶段实例分割模型是在faster-rcnn(两阶段目标检测模型)添加掩模分支,但是在YOLACT里没有feature roi
转载
2024-03-25 13:46:52
42阅读
把图像分成若干个特定的、具有独特性质的区域,每一个区域代表一个像素的集合,每一个集合代表一个物体,而完成该过程的技术通常称为图像分割。图像分割方法主要分为:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法,以及基于特定理论的分割方法等。 阈值分割实现简单、计算量小、性能稳定。 阈值分割处理又称为图像的二值化处理。 文章目录1 全局阈值分割APIOTSU优化TRIANGLE优化直方图技术法
转载
2024-05-10 13:59:35
52阅读