一、TnesorFlow 计算模型————计算图1、 计算图概念1.1 Tensor Tensor就是张量, 可以简单理解为多维数组,表明了数据结构1.2 FlowFlow 表达了张量之间通过计算相互转化的过程,体现了数据模型1.3 数据流图基础数据流图是每个 TensorFlow 程序的核心,用于定义计算结构
每一个节点都是一个运算,每一条边代表了计算之间的依赖关系上图展示了可完成基本加法运算
转载
2024-06-05 22:13:28
80阅读
文章目录1.Keras 的分布式训练2.多工作器(worker)配置 1.Keras 的分布式训练概述
tf.distribute.Strategy API 提供了一个抽象的 API ,用于跨多个处理单元(processing units)分布式训练。
它的目的是允许用户使用现有模型和训练代码,只需要很少的修改,就可以启用分布式训练。#定义分配策略
#创建一个 MirroredStrategy
本文主要带领读者了解生成对抗神经网络(GAN),并使用提供的face数据集训练网络GAN 入门自 2014 年 Ian Goodfellow 的《生成对抗网络(Generative Adversarial Networks)》论文发表以来,GAN 的进展突飞猛进,生成结果也越来越具有照片真实感。就在三年前,Ian Goodfellow 在 reddit 上回答 GAN 是否可以应用在文本领域的问题
转载
2024-05-11 20:53:01
83阅读
本文主要带领读者了解生成对抗神经网络(GAN),并使用提供的face数据集训练网络GAN 入门自 2014 年 Ian Goodfellow 的《生成对抗网络(Generative Adversarial Networks)》论文发表以来,GAN 的进展突飞猛进,生成结果也越来越具有照片真实感。 就在三年前,Ian Goodfellow 在 reddit 上回答 GAN 是否可以应用在文本领域的问
转载
2024-05-09 17:31:04
43阅读
对抗网络是14年Goodfellow Ian在论文Generative Adversarial Nets中提出来的。 原理方面,对抗网络可以简单归纳为一个生成器(generator)和一个判断器(discriminator)之间博弈的过程。整个网络训练的过程中,两个模块的分工判断网络,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假)。 生成网络,同样也可以看成是一个神经网络模型,输入是一组随机数Z,输出是一个
原创
2021-08-12 22:02:51
504阅读
对于最流行的机器学习框架来说,TensorFlow 2.0 将是一个重要的里程碑:大量的更改即将到来,所有的一切都以人人可以使用 ML 为目标。但是,这些更改要求老用户完全重新学习如何使用框架:本文介绍了 1.x 和 2.x 版本之间的所有(已知的)差异,主要是思维方式的改变,并着重介绍了新实现的优缺点。对于新手来说,本文也是一个很好的起点:现在就开始以 TensorFlow 2.0 的方式思考,
转载
2024-05-01 12:39:40
54阅读
对抗网络是14年Goodfellow Ian在论文Generative Adversarial Nets中提出来的。 原理方面,对抗网络可以简单归纳为一个生成器(generator)和一个判断器(discriminator)之间博弈的过程。整个网络训练的过程中,两个模块的分工判断网络,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假) 生成网络,同样也可以看成是一个神经网络模型,输入是一组随机数Z,输出是一个图
原创
2021-08-12 22:02:47
256阅读
如何训练GAN
原创
2021-08-02 15:42:04
172阅读
看过 TensorFlow-slim 训练 CNN 分类模型(续) 及其相关系列文章的读者应该已经感受到了 tf.contrib.slim 在训练卷积神经网络方面的极其方便之处,特别是它让构建模型变得非常直观。但不可忽视的是,它还存在一在很大的缺点,就是它在训练模
转载
2024-05-09 15:18:30
75阅读
今天还是说GAN的训练问题,说说纳什均衡再说几个小技巧
原创
2021-08-10 11:33:19
1308阅读
头一阵子放假了,时间好短呀~)作者&编辑 | 小米粥上一期中,我们说明了G...
原创
2022-10-12 15:26:08
1175阅读
步骤:数据处理:将数据喂给网络搭建网络模型Loss训练模型测试第一步 数据处理将数据集处理成FTRecord的标准格式(也可以是其它格式,详见下面的参考链接)将数据传给TensorFlowTensorFlow 读取自己的数据集数据存储形式如下:Train_TFRecords_00123
Train_TFRecords_00017
......数据存储地址TFRecordPath;用os.listd
转载
2024-02-28 14:18:16
35阅读
TensorFlow的命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算。TensorFlow是张量从图的一端流动到另一端的计算过程,这也是TensorFlow的编程模型。
一 运行机制
TensorFlow的运行机制属于“定义”和“运行”相分离。从操作层面可以抽象为两种:模型的构建和模型的运行。
二 基
转载
2024-04-26 14:53:25
26阅读
对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练。但是,如果数据量较大,这样的方法就不适用了,因为太耗内存。在这儿我介绍一种比较通用,高效的读取方法,即使用tensorflow内定标准格式——TFRecord.TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件。TFRecord
转载
2024-04-08 10:27:53
41阅读
做机器训练有段时间了,从Windows到Mac再到Unbuntu,一直在搭建tensorflow机器训练环境。在工作中逐步找到最快捷的搭建方式,这次就以Mac为例记录下在Mac中搭建tensorflow机器训练环境(Ubuntu搭建流程是一样的)。 首先,由于多年来养成的IDE编程习惯,就想着如果有合适的IDE用于开发ten
转载
2024-03-09 20:41:18
54阅读
GAN生成对抗网络是近几年来最酷的技术,可以做到影像生成。 GAN中的生成器是输入任意一个向量,输出一张图像。输入向量的每个值可能代表着输入图像的某个特征。GAN不但有生成器,还有一个判别器。输入一张图像,然后对这张图像进行评价这张图像是否真实。 生成器和判别器不断对抗而进化,生成器为了骗过生成器而不断生成更逼真的图像,而判别器也会不断进化使得能够判断出生成器生成的图片。 首先初始化生成器和判别器
转载
2024-06-19 06:10:20
56阅读
论文:Generative Adversarial Networks 作者:Ian J. Goodfellow 年份:2014年从2020年3月多开始看网络,这是我第一篇看并且可以跑通代码的论文,简单记录一下,有时间会补充。 更多关于GAN的可以看我另一篇:直接讲代码实现部分,这个代码是用pytorch训练GAN,基于MNIST数据集 真实图片:代码:import torch
import tor
转载
2024-03-26 07:27:33
46阅读
GAN自推出以来就以训练困难著称,因为它的训练过程并不是寻找损失函数的最小值,而是寻找生成器和判别器之间的纳什均衡。前者可以直接通过梯度下降来完成,而后者除此之外,还需要其它的训练技巧。 下面对历年关于GAN的论文提出的训练技巧进行总结,这里仅记录技巧,具体原理请直接看论文原文。 WGAN和WGAN
原创
2022-01-14 16:34:01
373阅读
生成式对抗网络(GAN)是近年来大热的深度学习模型。最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN。
本文主要分为三个部分:介绍原始的GAN的原理
同样非常重要的DCGAN的原理
如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-)
一、GAN原理介绍
说到GAN第一篇要看的paper当然是Ian Goodfe
转载
2021-07-02 16:11:36
549阅读
生成式对抗网络(GAN)是近年来大热的深度学习模型。最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN。
本文主要分为三个部分:介绍原始的GAN的原理
同样非常重要的DCGAN的原理
如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-)
一、GAN原理介绍
说到GAN第一篇要看的paper当然是Ian Goodfello
转载
2019-06-24 08:19:46
178阅读