聚类分析 | 基于GA遗传算法优化kmeans聚类(Matlab)
创新研究亮点!GA-Kmeans-Transformer时序聚类+状态识别组合模型
机器学习:Kmeans聚类算法总结及GPU配置加速demoKmeans算法介绍版本1:利用sklearn的kmeans算法,CPU上跑版本2:利用网上的kmeans算法实现,GPU上跑版本3:利用Pytorch的kmeans包实现,GPU上跑相关资料 Kmeans算法介绍算法简介该算法是一种贪心策略,初始化时随机选取N个质心,不断迭代,让周围元素到质心的误差累积和最小,从而找到质心或者说对应的簇
K均值(K-means)算法 K-means 算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为形心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各簇的形心的值,直至得到最好的聚类结果。(形心可以是实际的点、或者是虚拟点) 假
原创 2021-08-01 15:41:56
421阅读
创新亮点!GA-Kmeans-Transformer-BiLSTM时序聚类+状态识别组合模型
Kmeans原理介绍聚类介绍聚类kmeans 算法是一个无监督学习过程。一般是用来对数据对象按照其特征属性进行分组。经常被应用在客户分群、欺诈检测、图像分析领域。K-means是最有名并且最经常使用的聚类算法算法介绍:KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇,然后按照平均法重新计算各个簇的质心,从而确定簇心,一直迭代,直到簇心的移动距离小于某个给定
原标题:Kmeans算法的Python实现Kmeans聚类kmeansK-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。k个初始类聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。
上了斯坦福Andrew NG 课,把所有的练习用matlab 做完一遍之后感觉意犹未尽,因此决定用pyton 将课内算法逐一实现一遍,以加深理解,同时也避免自己成为调包侠,哈哈,话不多说,进入正题。 Kmeans 是一个经典的无监督聚类算法,算法内容比较容易理解。有兴趣的同学可以百度相关论文研读其内容,这里不再赘述。 Kmeans 算法流程如下: Input: -K (聚类数目,即所需分类的
前言k-means算法是数据挖掘十大经典算法之一,已出现了很多的改进或改良算法。例如1、对k的选择可以先用一些算法,分析数据的分布,如重心和密度等,然后选择合适的k。2、有人提出了二分k均值(bisecting k-means)算法,它对初始的k个质心的选择就不太敏感。3、基于图划分的谱聚类算法,能够很好地解决非凸数据的聚类。一、Canopy算法配合初始聚类1.1、算法原理选择质心,T1圆内的点归
python实现kmeanskmeans++方法 一.kmeans聚类:基本方法流程1.首先随机初始化k个中心点2.将每个实例分配到与其最近的中心点,开成k个类3.更新中心点,计算每个类的平均中心点4.直到中心点不再变化或变化不大或达到迭代次数优缺点:该方法简单,执行速度较快。但其对于离群点处理不是很好,这是可以去除离群点。kmeans聚类的主要缺点是
转载 2023-06-27 10:36:22
173阅读
刚刚研究了KmeansKmeans是一种十分简单的聚类算法。可是他十分依赖于用户最初给定的k值。它无法发现随意形状和大小的簇。最适合于发现球状簇。他的时间复杂度为O(tkn)。kmeans算法有两个核心点:计算距离的公式&推断迭代停止的条件。一般距採用欧式距离等能够随意。推断迭代停止的条件能够有:1) 每一个簇的中心点不再变化则停止迭代2)全部簇的点与这个簇的中心点的误差平方和(SSE)
转载 2023-05-26 23:49:52
82阅读
Kmeans算法是最常用的聚类算法。 主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。其训练数据的流程是:根据上面的流程图来实现具体代码: 数据集提取链接链接
转载 2023-05-26 11:34:53
149阅读
k-means算法此次的作业是要求我们利用所学知识实现利用python实现k-means算法,首先我们先来简单的介绍一下k-means算法: k-means算法接受输入量k;然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”来进行计算的。算法实现思路k-means算法是一种基于
转载 2023-08-11 22:14:29
73阅读
GA-Kmeans-Transformer-GRU时序聚类+状态识别组合模型,创新发文无忧!
创新未发表!研究亮点!时序聚类+状态识别,GA-Kmeans-Transformer-LSTM组合模型
文章目录前言加速方法分享1. Spark失效2. Sklearnex加速KMeans计算2.1 安装2.2 开启加速3. 降维4. 减少数据5. GPU6. 放弃轮廓系数方法 前言KMeans是最常用的最简单的聚类算法。它的效率是常见的一系列聚类算法中最高的。但受向量大小、数据量和类中心数量影响,聚类速度变慢。这里分享一些简单的技巧或者一些坑。加速方法分享1. Spark失效Spark采用并行分
转载 2023-08-13 15:42:32
267阅读
kmeans为无监督聚类最重要的算法,本文用kmeans算法对图像进行分割。算法原理参考:以上文章对Kmeans解释得很清楚,这里我主要说一下实例代码。核心思想:kmeans以k为参数,把样本分为k个族(对于图像,每个像素点灰度值就是样本),使族内具有较高的相似度,而族与族之间相似度较低。核心步骤:假如要分为2类,则一:随机定义2个中心点,P1与P2。 并且P1代表A族,P2代表B族。二:所有像素
背景我们目的是将样本分成k个类,其实说白了就是求每个样例x的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎么评价假定的好不好呢?我们使用样本的极大似然估计来度量,这里是就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指
原创 2020-06-28 20:07:21
1215阅读
手写算法-python代码实现Kmeans原理解析代码实现实例演示sklearn对比总结 原理解析今天,我们来讲一下Kmeans,一种无监督聚类算法,也是最为经典的基于划分的聚类方法,它的思想是:对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。实现流程如下: 1、先确定数据集聚类个数k; 2、在数据集中随机选取k个数据,作为初
并对其内容进行了补充和完善,使代码可以直接运行,运算的原始数据由随机数产生。图示为3个簇,1000个二维变量的分类结果主程序:import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.util.ArrayList; import java.util.Iterator; import
转载 2023-06-01 10:33:55
65阅读
  • 1
  • 2
  • 3
  • 4
  • 5