机器学习:Kmeans聚类算法总结及GPU配置加速demoKmeans算法介绍版本1:利用sklearn的kmeans算法,CPU上跑版本2:利用网上的kmeans算法实现,GPU上跑版本3:利用Pytorch的kmeans包实现,GPU上跑相关资料 Kmeans算法介绍算法简介该算法是一种贪心策略,初始化时随机选取N个质心,不断迭代,让周围元素到质心的误差累积和最小,从而找到质心或者说对应的簇
转载
2024-03-22 21:14:26
505阅读
NVIDIA GeForce NOW 的工作原理是通过在数据中心中利用 NVENC 并将结果串流至终端客户端此 SDK 包含两个硬件加速接口:用于视频编码加速的 NVENCODE API用于视频解码加速的 NVDECODE API(旧称 NVCUVID API)NVIDIA GPU 包含一个或多个基于硬件的解码器和编码器(独立于 CUDA Core),可为几种热门的编解码器提供基于硬件的
转载
2024-05-23 10:35:05
115阅读
聚类是信息检索、数据挖掘中的一类重要技术,是分析数据并从中发现有用信息的一种有效手段。它将数据对象分组成为多个类或簇,使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别很大。作为统计学的一个分支和一种无监督的学习方法,聚类从数学分析的角度提供了一种准确、细致的分析工具。而k-means算法是最常用和最典型的聚类算法之一,k-means算法是典型的基于距离的聚类算法,采用距离作为相
转载
2024-03-18 14:27:48
192阅读
这几天学习了无监督学习聚类算法Kmeans,这是聚类中非常简单的一个算法,它的算法思想与监督学习算法KNN(K近邻算法)的理论基础一样都是利用了节点之间的距离度量,不同之处在于KNN是利用了有标签的数据进行分类,而Kmeans则是将无标签的数据聚簇成为一类。接下来主要是我对《机器学习实战》算法示例的代码实现和理解。 首先叙述下算法项目《对地图上的俱乐部进行聚类
KMeans算法步骤: 1. 确定聚类个数k 2. 随机选择k个质心 3. 对于所有样本点: 根据样本点到质心的距离分类 4. 分类完成后,如果所有样本点的类别没有变化,算法结束 如果有变化,重新计算质心(当前类中样本的平均值),回到步骤3几个问题: 1. 聚类个数k的确定 2. 初始时质心的选取 3. 容易出现局部最优解考虑在多维空间中将数据点分组/聚类的问题。假设有一个数据集
K-means算法通常可以应用于维数、数值都很小且连续的数据集,比如:从随机分布的事物集合中将相同事物进行分组。1.文档分类器根据标签、主题和文档内容将文档分为多个不同的类别。这是一个非常标准且经典的K-means算法分类问题。首先,需要对文档进行初始化处理,将每个文档都用矢量来表示,并使用术语频率来识别常用术语进行文档分类,这一步很有必要。然后对文档向量进行聚类,识别文档组中的相似性。 这里是用
转载
2024-05-10 17:22:35
64阅读
1.基本Kmeans算法[1] [cpp] view plaincopy
1. 选择K个点作为初始质心
2. repeat
3. 将每个点指派到最近的质心,形成K个簇
4. 重新计算每个簇的质心
5. until 簇不发生变化或达到最大迭代次数 时间复杂度:O(tKmn),其中,t为迭代次数,K为簇的数目,m为记录数,n为维数 空间复
上一篇文章中,我在最后有说到,K-means算法由于初始“聚类中心”点是随机选取的,因此最终求得的簇的划分与随机选取的“聚类中心”有关,也就是说,可能会造成多种 k 个簇的划分情况。这是因为K-means算法收敛到了局部最小值,而非全局最小值。为了改进这一缺点,我们可以对算法加以改进。下面,我将为大家介绍两种改进的算法——K-means++ 和二分K-means。一)K-means++K-mean
Kmeans算法的原理 K-means聚类属于原型聚类(基于原型的聚类,prototype-based clustering)。原型聚类算法假设聚类结构能够通过一组原型进行刻画,在现实聚类任务中极为常用。通常情况下,原型聚类算法对原型进行初始化,然后对原型进行迭代更新求解。k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-
转载
2024-08-12 20:41:33
124阅读
K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法。 传统K-Means算法流程首先来看K-Mea
转载
2024-03-22 20:30:48
304阅读
K均值(K-means)算法 K-means 算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为形心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各簇的形心的值,直至得到最好的聚类结果。(形心可以是实际的点、或者是虚拟点) 假
原创
2021-08-01 15:41:56
486阅读
原标题:Kmeans算法的Python实现Kmeans聚类kmeansK-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。k个初始类聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。
转载
2023-08-21 19:27:01
60阅读
Kmeans原理介绍聚类介绍聚类kmeans 算法是一个无监督学习过程。一般是用来对数据对象按照其特征属性进行分组。经常被应用在客户分群、欺诈检测、图像分析领域。K-means是最有名并且最经常使用的聚类算法算法介绍:KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇,然后按照平均法重新计算各个簇的质心,从而确定簇心,一直迭代,直到簇心的移动距离小于某个给定
转载
2023-12-31 16:58:50
28阅读
上了斯坦福Andrew NG 课,把所有的练习用matlab 做完一遍之后感觉意犹未尽,因此决定用pyton 将课内算法逐一实现一遍,以加深理解,同时也避免自己成为调包侠,哈哈,话不多说,进入正题。 Kmeans 是一个经典的无监督聚类算法,算法内容比较容易理解。有兴趣的同学可以百度相关论文研读其内容,这里不再赘述。 Kmeans 算法流程如下: Input: -K (聚类数目,即所需分类的
转载
2023-10-13 11:43:28
54阅读
Kmeans算法是最常用的聚类算法。 主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。其训练数据的流程是:根据上面的流程图来实现具体代码: 数据集提取链接链接
转载
2023-05-26 11:34:53
172阅读
k-means算法此次的作业是要求我们利用所学知识实现利用python实现k-means算法,首先我们先来简单的介绍一下k-means算法: k-means算法接受输入量k;然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”来进行计算的。算法实现思路k-means算法是一种基于
转载
2023-08-11 22:14:29
84阅读
刚刚研究了Kmeans。Kmeans是一种十分简单的聚类算法。可是他十分依赖于用户最初给定的k值。它无法发现随意形状和大小的簇。最适合于发现球状簇。他的时间复杂度为O(tkn)。kmeans算法有两个核心点:计算距离的公式&推断迭代停止的条件。一般距採用欧式距离等能够随意。推断迭代停止的条件能够有:1) 每一个簇的中心点不再变化则停止迭代2)全部簇的点与这个簇的中心点的误差平方和(SSE)
转载
2023-05-26 23:49:52
93阅读
前言k-means算法是数据挖掘十大经典算法之一,已出现了很多的改进或改良算法。例如1、对k的选择可以先用一些算法,分析数据的分布,如重心和密度等,然后选择合适的k。2、有人提出了二分k均值(bisecting k-means)算法,它对初始的k个质心的选择就不太敏感。3、基于图划分的谱聚类算法,能够很好地解决非凸数据的聚类。一、Canopy算法配合初始聚类1.1、算法原理选择质心,T1圆内的点归
转载
2024-06-06 11:01:05
68阅读
python实现kmeans与kmeans++方法
一.kmeans聚类:基本方法流程1.首先随机初始化k个中心点2.将每个实例分配到与其最近的中心点,开成k个类3.更新中心点,计算每个类的平均中心点4.直到中心点不再变化或变化不大或达到迭代次数优缺点:该方法简单,执行速度较快。但其对于离群点处理不是很好,这是可以去除离群点。kmeans聚类的主要缺点是
转载
2023-06-27 10:36:22
194阅读
背景我们目的是将样本分成k个类,其实说白了就是求每个样例x的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎么评价假定的好不好呢?我们使用样本的极大似然估计来度量,这里是就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指
原创
2020-06-28 20:07:21
1267阅读