变换网文精粹:变换教程(三)三、为什么我们需要频率信息(1)?        通常,我们可以容易的从频域中看到一些在时域中看不到的信息。        让我们举一个生物信号的例子。假如我们正在观看一个心电图,心脏病专家一般都熟知一些典型的健康心电图。如果某个心电图与一般的心电图有较大的偏差,这往往是发病的征兆。
1.软件版本MATLAB2013b2.本算法理论知识人脸识别是人脸识别与匹配领域的一项重要技术。为了获得理想的识别效果,必须在具有良好的类内聚力和类间差异的特征。现有的方法包括一种基于不同颜色模型和颜色空间中人脸肤色模型的人脸识别方法。一种基于颜色直方图模型的人脸识别方法,该方法是由皮肤区域校准图像的大量颜色建立的。提出了一种基于人脸光照补偿和非线性颜色变换的人脸识别方法。Gabor特征提取Gab
由于Gabor特征对光照、姿态具有一定的鲁棒性,Gabor特征具有良好的空间局部性和方向选择性,可以很好的描述图像的纹理信息,因此许多算法都采用Gabor特征作为识别特征。 该算法仅对图像中部分关键特征点进行Gabor变换,并将这些特征点位置为顶点、以其Gabor变换系数为顶点属性、以其关键点位置关系为边属性的属性图,从而将问题转化为图匹配问题。通过合理的选择特征点的位置,弹性图可以很好地同
原创 2014-03-19 21:57:00
1989阅读
# 实现“ python”的流程 ## 1. 确定需求 在教导小白实现“ python”之前,我们首先需要确定具体的需求是什么。根据题目中的描述,我们可以推断出,“ python”是指实现一个能够运行 python 代码的程序。 ## 2. 设计 在确定了需求后,我们需要设计整个实现的流程。下面是实现“ python”的步骤表格: | 步骤 | 描述 | | --- |
原创 2023-11-02 04:36:05
50阅读
# 教你如何实现Python ## 流程图 ```mermaid flowchart TD A[获取信号] --> B[波分解] B --> C[阈值处理] C --> D[重构] ``` ## 整体流程 首先,我们需要获取信号,然后进行波分解,接着对系数进行阈值处理,最后进行重构得到处理后的信号。 ## 步骤表格 | 步骤 | 描述 | |
原创 2024-05-08 04:12:12
27阅读
相关资料笔记术语(中英对照):尺度函数 : scaling function (在一些文档中又称为父函数 father wavelet )波函数 : wavelet function(在一些文档中又称为母函数 mother wavelet)连续的变换 :CWT离散的变换 :DWT变换的基本知识不同的基函数,是由同一个基本波函数经缩放和平移生成的。变换是将原始图像与基函数
我希望能简单介绍一下变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散 为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不 是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个变换
 ## 二维变换(一维和n维类似): # 单层变换 pywt.dwt2 pywt.dwt2(data, wavelet, mode=’symmetric’, axes=(-2, -1)) data: 输入的数据 wavelet:基 mode: 默认是对称的 return: (cA, (cH, cV, cD))要注意返回的值,分别为低频分量,水平高频、垂直高频、对角线高频。高频
转载 2023-06-16 15:32:57
216阅读
            如图,将两张图品进行融合,步骤如下 1、首先要了解什么是     [x0,x1,x2,x3]=[90,70,100,70] 为达到压缩 我们可取 (x0+x1)/2  
应用比较广泛,近期想使用其去噪。由于网上都是matlib实现,故记下一下Python的使用Pywavelet Denoising 去噪# -*- coding: utf-8 -*- import numpy as np import pywt data = np.linspace(1, 4, 7)# pywt.threshold方法讲解:# pywt.threshold(data,valu
连续变换CWT是一种冗余变换,CWT系数取决于所用的,所以理解起来稍微有些困难。为更好地理解CWT系数,本文从简单信号和简单开始分析。擅长检测信号的不连续性或奇异点,信号的突变点处具有较大的绝对值系数。首先设置一个移位脉冲信号,脉冲发生在第500点的位置。x = zeros(1000,1); x(500) = 1;选择了一个简单信号,自然要选择一个简单,那自然是haar了在
1.数据集介绍:试验台如图所示,试验台左侧有电动机,中间有扭矩收集器,右侧有动力测试仪,控制电子设备在图中没有显示。SKF6203轴承使用16通道数据采集卡采集轴承的振动数据,并在驱动端部分(DE)、风扇端部分(FE)、基座端安装传感器。该实验在轴承内圈、滚动体、外圈上采用电火花加工方式制造故障,故障缺陷直径尺寸为0.1778mm、0.3556mm、0.5334mm(不同损伤程度)。分别在负载0H
本文基于matlab2020版官方网页DocumentationCrack Identification From Accelerometer Data及个人理解。该示例显示了如何使用wavelet和深度学习技术来检测横向路面裂缝并确定其位置。该示例演示了将散射序列用作门控循环单元(GRU)和一维卷积网络的输入,以便根据是否存在裂缝对时间序列进行分类。数据是从安装在前排乘客座椅车轮的转向节
d=-6; h=6; n=100; [g1,x]=morlet(d,h,n); subplot(2,2,1); plot(x,g1,'-r','LineWidth',1.5); xlabel('t') title('Morlet 时域') g2=fft(g1); g3=abs(g2); subplot(2,2,2); plot(g3); xlabel('f') title('Morlet 频域')
转载 2023-07-01 18:20:15
134阅读
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。?个人主页:​​Matlab科研工作室​​?个人信条:格物致知。更多Matlab仿真内容点击?​​智能优化算法​​  ​​神经网络预测​​ ​​雷达通信 ​​ ​​无线传感器​​​​信号处理​​ ​​图像处理​​ ​​路径规划​​ ​​元胞自动机​​ ​​无人机​​⛄ 内容介绍【图像特征提取】基
原创 2022-10-17 22:59:05
618阅读
1评论
文章目录什么是从一个例子入手把例子再深化一下各种个样的基哈尔其他波分解图像(二维)变换 什么是上一篇里提到了stft,短时傅里叶变换,是针对不稳定信号进行加窗来做每一个小窗口的频谱分析。然后一个一个的时间窗就可以理解为时域。 在stft中,窗口的大小是固定的,太大无法分辨,太小又无法获得足够的信息(一个极端的例子就是一个窗口中只有一个信号采样点,那么就根本没有频率的概念
傅里叶变换将信号用function basis的形式表示,函数基通常是正弦函数或者余弦函数,因为正交,便于求出系数。变换傅里叶变换用的是正弦,特点是能量无穷,同样的振幅可以在无穷大的区间里振荡。是一种是一种能量在时域非常集中的。它的能量是有限的,而且集中在某一点附近。因此它对于分析瞬时时变信号非常有用。可以通过伸缩、平移等计算对函数或信号进行多尺度分析。每个变换都有一个母和父
转载 2024-03-26 11:38:06
38阅读
一.去噪的原理信号产生的系数含有信号的重要信息,将信号经波分解后系数较大,噪声的系数较小,并且噪声的系数要小于信号的系数,通过选取一个合适的阀值,大于阀值的系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。阀值去噪的基本问题包括三个方面:基的选择,阀值的选择,阀值函数的选择。(1) 基的选择:通常我们希望所选取的
# 教你如何实现“Python Gabor” ## 概述 在这篇文章中,我将教你如何在Python中实现Gabor滤波器。Gabor滤波器是一种用于图像处理的特殊滤波器,可以用于边缘检测、纹理分析等应用。 ### 流程图 ```mermaid flowchart TD A(开始) --> B(导入必要的库) B --> C(定义Gabor滤波器) C --> D(加载图
原创 2024-06-23 04:58:29
33阅读
使用MATLAB实现基于变换的信号去噪前言一、需要调用的子函数1、Gnoisegen函数2、levelandth1函数3、level函数4、snrr函数二、生成原始信号和加噪信号三、探讨基对去噪效果的影响四、探讨分解层数对去噪效果的影响五、改进阈值函数六、各阈值函数、阈值估计方法的去噪效果1、生成去噪效果图2、计算去噪后信噪比参考文献 前言本文中代码主要完成以下工作: 1、探讨基、分
转载 2023-10-15 17:06:50
530阅读
  • 1
  • 2
  • 3
  • 4
  • 5