字节跳动数据流的业务背景数据流处理的主要是埋点日志。埋点,也叫 Event Tracking,是数据和业务之间的桥梁,是数据分析、推荐、运营的基石。用户在使用 App、小程序、Web 等各种线上应用时产生的行为,主要通过埋点的形式进行采集上报,按不同的来源分为客户端埋点、Web 端埋点、服务端埋点。不同来源的埋点都通过数据流的日志采集服务接收到 MQ,然后经过一系列的 Flink 实时 ETL 对
转载 2024-03-24 15:07:32
145阅读
一、准备工作在开始研究Flink CDC原理之前(本篇先以CDC1.0版本介绍,后续会延伸介绍2.0的功能),需要做以下几个工作(本篇以Flink1.12环境开始着手)打开Flink官网(查看Connector模块介绍)打开Github,下载源码(目前不能放链接,读者们自行在github上搜索)apache-flinkflink-cdc-connectorsdebezium开始入坑二、设计提议2.
转载 2024-02-19 20:41:34
511阅读
目录对flink checkpoint的理解与实现背景什么是flink checkpoint链接我的一些理解checkpoint实现流程checkpoint存储checkpoint实现checkpoint和savepoint的区别AB Test 对flink checkpoint的理解与实现背景由于我们公司的实时架构主要是kafka -> spark/storm -> kafka -
转载 2024-06-19 18:45:31
130阅读
摘要:本文整理自 Apache Flink Committer,Flink CDC Maintainer,阿里巴巴高级开发工程师徐榜江(雪尽)在 5 月 21 日 Flink CDC Meetup 的演讲。主要内容包括:Flink CDC 技术传统数据集成方案的痛点基于 Flink CDC 的海量数据的实时同步和转换Flink CDC 社区发展点击查看直播回放 & 演讲PDF一、Flink
Flink之容错机制一、检查点(Checkpoint)1.1、定义1.2、启用及配置检查点二、保存点(savepoint)2.1、保存点的用途2.2、使用保存点2.2.1、创建保存点2.2.2、从保存点重启应用 一、检查点(Checkpoint)1.1、定义有状态流应用中的检查点(checkpoint),其实就是所有任务的状态在某个时间点的一个快照(一份拷贝)。简单来讲,就是一次“存盘”,让我们
MySQL CDC连接器允许从MySQL数据库读取快照数据和增量数据。本文档根据官网翻译了如何设置MySQL CDC连接器以对MySQL数据库运行SQL查询。依赖关系为了设置MySQL CDC连接器,下表提供了使用构建自动化工具(例如Maven或SBT)和带有SQL JAR捆绑包的SQL Client的两个项目的依赖项信息。1、Maven依赖<dependency> <gro
转载 2024-05-24 12:54:36
268阅读
前言:主要讲解了技术原理,入门与生产实践,主要功能:全增量一体化数据集成、实时数据入库入仓、最详细的教程。Flink CDC 是Apache Flink的一个重要组件,主要使用了CDC技术从各种数据库中获取变更流并接入到Flink中,Apache Flink作为一款非常优秀的流处理引擎,其SQL API又提供了强大的流式计算能力,因此结合Flink CDC能带来非常广阔的应用场景。例如,Flink
转载 2023-09-05 20:31:18
594阅读
文章目录1.CDC概述1.1 CDC1.2 CDC 分类1.3 Flink-CDC1.4 ETL 分析2.Flink CDC 编码2.1 提前准备2.2 mysql 的设置2.3 java 代码编写3.利用自定义格式编码4.Flink Sql 编码5.Flink CDC 2.0
原创 2022-05-26 00:37:26
1044阅读
1评论
前言       关于cdc(change data capture)不知道的小伙伴们可以去百度一下,简单来说就是对于数据库的变更进行一个探测,因为数据库的更改对于客户端来说是没有感知的,你需要开启线程去查询,才知道数据有没有更新,但是就算是查询,如果是直接select * from ....,这样获取的结果还要和上次获取的结果对比,才知道数据有没有发生变化
转载 2023-09-27 13:42:28
262阅读
文章目录简介种类基于日志的 CDC 方案介绍flink作为etl工具应用场景开源地址最新flink cdc官方文档分享流程图1.X痛点目前支持开发方式开发测试大致流程使用mysql开启binlog代码 简介CDC是Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到消
转载 2023-08-06 11:24:31
381阅读
本文介绍了  单表->目标源单表同步,多单表->目标源单表同步。注:1.16版本、1.17版本都可以使用火焰图,生产上最好关闭,详情见文章末尾Flink版本:1.16.2环境:Linux CentOS 7.0、jdk1.8基础文件:flink-1.16.2-bin-scala_2.12.tgz、flink-connector-jdbc-3.0.0-1.16.jar、(
转载 2024-06-24 20:57:00
886阅读
println(dataBaseList, tableList) val debeziumProps = new Properties() debeziumProps.setProperty(“debezium.snapshot.mode”,“never”) val mysqlSource = MySqlSource.builderString .hostname(sourceFormat.
转载 2024-07-22 16:22:52
160阅读
文章目录01 Flink CDC介绍02 Apache Iceberg介绍03Flink CDC打通数据实时导入Iceberg实践3.1 数据入湖环境准备3.2 数据入湖速度测试3.3 数据入湖任务运维3.4 数据入湖问题讨论04未来规划4.1 整合Iceberg到实时计算平台4.2 准实时数仓探索 在构建实时数仓的过程中,如何快速、正确的同步业务数据是最先面临的问题,本文主要讨论一下如何使用
转载 2024-08-27 11:37:25
116阅读
目录前言:1、springboot引入依赖:2、yml配置文件3、创建SQL server CDC变更数据监听器4、反序列化数据,转为变更JSON对象5、CDC 数据实体类6、自定义ApplicationContextUtil7、自定义sink 交由spring管理,处理变更数据前言:        我的场景是从SQL Server数据库获取指定表的增量数据
转载 2023-10-19 16:09:03
489阅读
1评论
1 说明1.1 案例说明本文使用 Flink CDC 最新版本 2.2 及 Flink 1.14 版本通过 Java DataStream API 做 双流 Join 案例。双流 Join 大致流程:双流Join案例具体划分有:时间窗口联结处理事件窗口联结 处理时间窗口 内联结 案例处理时间窗口 外联结 案例事件时间窗口联结 事件时间窗口 内联结 案例事件时间窗口 外联结 案例间隔
转载 2024-04-11 12:07:53
127阅读
图文详解CDC技术,看这一篇就够了!Flink CDC Connectors 是 Apache Flink 的一组源端(Source)连接器,通过捕获变更数据(Change Data Capture)从不同数据库中采集数据。项目早期通过集成 Debezium 引擎来采集数据,支持 全量 + 增量 的模式,保证所有数据的一致性。但因为集成了 Debe
今天为大家带来 Flink checkpoint 核心知识点以及优化方案,本文主要从以下几方面进行介绍:1 Checkpoint 执行流程2 checkpoint 执行失败问题分析3 非对齐checkpoint 优化方案4 动态调整 buffer 大小5 通用增量快照文章 PDF 版本已经整理好,扫描下方二维码,添加土哥微信,发你 PDF 版本。1 chec
        本文讲解版本截止到FlinkCDC 2.2一、概述1.1 FlinkCDC 简介Flink CDC (Flink Change Data Capture) 是基于数据库的日志 CDC 技术,实现了全增量一体化读取的数据集成框架。搭配Flink计算框架,Flink CDC 可以高效实现海量数据的实时集成。
转载 2023-10-04 19:14:39
494阅读
一、Checkpoint概念    上篇文章我们已经讲了Flink的状态管理,对于这些状态如何保存,我们一起学习一下Flink的Checkpoint机制。Flink本身为了保证其高可用的特性,以及保证作用的Exactly Once的快速恢复,进而提供了一套强大的Checkpoint机制。    Checkpoint机制是Flin
转载 2023-11-16 14:56:19
231阅读
一、背景介绍        在 OLTP 系统中,为了解决单表数据量大的问题,通常采用分库分表的方式将单个大表进行拆分以提高系统的吞吐量。但是为了方便数据分析,通常需要将分库分表拆分出的表在同步到数据仓库、数据湖时,再合并成一个大表。       &
转载 2023-11-03 15:24:26
224阅读
  • 1
  • 2
  • 3
  • 4
  • 5