文章目录前言一、为什么要进行批处理二、具体步骤1.选择输入图像所在路径2.选择输出图像保存路径3.批量读取图像、处理,输出(以提取边缘特征为例)4.完整代码三、实验演示总结参考博客 前言最近在复现论文,其中有一个环节是对图像进行特征提取,因为图像太多所以需要进行批处理。一、为什么要进行批处理在大部分图像处理任务中,第一步是对所需算法进行研究,在这一过程往往只针对一张或者少量图像进行处理,研究算法
转载
2024-07-31 11:41:26
112阅读
1 简介语音识别是处理语音信号的重要问题,当今社会,人工智能技术发展迅速,语音识别技术已经发展成为行业领域前列的先进技术.在以后的发展过程语音识别技术仍将发挥重大作用.语音信号是一种冗余度较高的非平稳随机信号,只有在短时间内才认为变化时缓慢的,在这个短的时间区间内语音信号特征保持稳定.因此,本课题提取小波变换、EMD分解、MEL倒谱特征、傅里叶变换信号。2 部分代码function varargo
原创
2022-03-15 10:27:56
547阅读
使用pyradiomics提取影像组学特征【详细】最近由于项目需求要使用pyradiomics提取影像组学特征,网上阅读了很多别人的博客,学到一些,然后去查看了pyradiomics的官方文档,最后自己实现了特征的提取,写下此文记录,方便日后查看。首先放上官方文档:https://pyradiomics.readthedocs.io/ 和pyradiomics源代码地址:https://githu
转载
2024-08-23 20:56:28
349阅读
HTK特征提取工具HCopy主要调用了HParm.c和HSigP.c这两个C文件里面的函数来实现了原始波形信号到MFCC的转换。特征提取的数据全部放在内存中处理,函数调用过程如下:main()->OpenSpeechFile->OpenParmFile->OpenBuffer->OpenAsChannel->FillBufFromChannel->GetFram
转载
2024-01-02 10:14:52
38阅读
一幅图像的纹理是在图像计算中经过量化的图像特征。图像纹理描述图像或其中小块区域的空间颜色分布和光强分布。纹理特征的提取分为基于结构的方法和基于统计数据的方法。一个基于结构的纹理特征提取方法是将所要检测的纹理进行建模,在图像中搜索重复的模式。该方法对人工合成的纹理识别效果较好。但对于交通图像中的纹理识别,基于统计数据的方法效果更好。LBP方法(Local binary patterns)是一个计算机
转载
2024-01-22 12:33:25
56阅读
当然可以,以下是一篇围绕您所描述技术主题的技术博客文章。
Matlab时域频域信号特征提取代码解析
一、引言
在当今大数据时代,信号处理技术在众多领域中发挥着至关重要的作用。特别是在机器学习分类回归问题中,信号特征提取的重要性日益凸显。Matlab作为一款功能强大的编程工具,其时域频域信号特征提取功能在数据处理和分析中具有广泛的应用。
二、时域特征分析
在信号处理中,时域特征是指信号在时间域上的表
ORB-SLAM2跟踪线程对相机输入的每一帧图像进行跟踪处理,如下图所示,主要包括4步,提取ORB特征、从上一帧或者重定位来估计初始位姿、局部地图跟踪和关键帧处理。以下结合相关理论知识,阅读ORB-SLAM2源代码,从而理解ORB-SLAM2算法中ORB特征提取过程。ORB(Oriented FAST and Rotated BRIEF)基于特征点的方法是SLAM的前端VO的主流方法,因为其运行稳
转载
2023-11-28 10:22:28
239阅读
1.特征工程直接影响模型预测结果。python用sklearn库做特征工程两种文本特征抽取方法(Count, tf-idf)(1)特征抽取API(统计单词次数)sklearn.feature_extractionpython调用sklearn.feature_extraction 的DictVectorizer实现字典特征抽取# 字典特征抽取
def dictvec():
#
转载
2023-11-06 18:00:28
101阅读
TsFresh学习 最近膜拜大佬写的GitHub学习到了一个时间序列数据特征提取的库-TsFresh,感觉好像挺牛逼的,去B站大学找了一下想找点资料学一学,尴尬的是… 发挥一下主观能动性,网上找了一下还好有官方文档! 英文的Introduction 官方文档第一句话就是说TsFres
转载
2024-04-28 15:35:37
115阅读
一、课程任务设计要求(1)在编写摄像头采集图像程序,能够对图像进行采集、保存处理; (2)对采集图像进行预处理,RGB 到 YCBCR 的色彩空间转换,用各个通道的阈值对图像进行二值化;形态学处理:腐蚀、膨胀、孔洞填充,连通区域提取,识别出指定的颜色区域; (3)能够识别到多个颜色并进行分割; (4)设计 GUI 界面,能够通过界面进行图像采集、识别、输出信息。二、实现1.对图像的采集与保存处理o
转载
2024-08-10 18:06:35
223阅读
特征选择(亦即降维)是数据预处理中非常重要的一个步骤。对于分类来说,特征选择可以从众多的特征中选择对分类最重要的那些特征,去除原数据中的噪音。主成分分析(PCA)与线性判别式分析(LDA)是两种最常用的特征选择算法。关于PCA的介绍,可以见我的另一篇博文。这里主要介绍线性判别式分析(LDA),主要基于Fisher Discriminant Analysis with Kernals[
转载
2024-01-13 22:43:19
363阅读
文章目录1 定义2. 字典特征提取API3. 字典特征提取案例:1.实现效果:2.实现代
原创
2023-01-09 17:08:53
433阅读
概述上一篇文章我们一起学习了GCN网络,它的作用是提取特征点和描述子,用于匹配得到位姿。本次我们一起学习它的改进版GCNv2,改进版在速度上大幅度提升,精度上和原网络性能相当。并且改进版所提取的特征点具有和ORB一样的格式,因此作者把它在ORB-SLAM中替换掉了ORB特征,也就是GCN-SLAM。论文链接:https://arxiv.org/abs/1902.11046v1代码链接
转载
2024-02-28 20:50:12
284阅读
语音信号为从声道输入的速度波(输入信号),与声道形状(系统)卷积得到的声压波。语音信号的特征参数的提取正是对语音信号进行时域和频域的处理分离出声道形状(系统)的过程。声道形状(系统)也正是无论任何语音信号,只要每个字母或数字相同(它的发音就相同),它就在一定程度上相同的特征参量(频域共振峰(震荡的顶点)的包络)。过程称为倒谱分析:(频域时对信号进行取对数处理)时域:卷积性;->fft频域:乘
转载
2023-07-05 21:47:14
669阅读
当我们进行目标追踪目标分割的时候一个基础的问题是:我们要找到吐下那个的特征,这些特征要易于被追踪比较。通俗的来说就是找到图象中的一些区域,无论你想向那个方向移动这些区域变化都很大,这个找到图象特征的技术被称为特征检测。harris角点检测原理。此外简单说一句这个算法的主要思想是计算像素的某个值,当其大于某个阈值时就认为该像素是角点(特征点)。cv2.cornerHarris(src, blockS
转载
2023-08-10 22:12:41
250阅读
1、前言传统 LBP 特征通过比较重心局部窗口区域中心像素点灰度值与其它像素点的灰度关系来进行二值编码,因而极易受噪点影响。在非均匀光照、噪声及遮挡等情况下对图像纹理特征的描述能力不足。ELBP 在对图形进行二值特征时,不仅考虑中心像素点灰度值与其它像素点的灰度大小关系,还对其灰度差异值的绝对值进行编码,以增加图像纹理的细节信息。本文旨在介绍 ELBP 特征提取方式实现思路。2、实现原理传统 LB
转载
2023-12-20 05:34:30
194阅读
1 背景LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子,具有旋转不变形和灰度值不变形等显著优点。主要用于纹理特征提取,在人脸识别部分有较好的效果。2 LBP特征原理2.1概述 从94年T. Ojala, M.Pietikäinen, 和D. Harwood提出至今,LBP大致经历
转载
2024-02-04 10:51:38
713阅读
引言在机器学习中有一种学习叫做手写数字识别,其主要功能就是让机器识别出图片中的数字,其步骤主要包括:图片特征提取、将特征值点阵转化为特征向量、进行模型训练。第一步便是提取图片中的特征提取。数据的预处理关系着后面模型的构建情况,所以,数据的处理也是机器学习中非常重要的一部分。下面我就说一下如何提取图片中的特征向量。图片灰度化 => 当我们拿到一种图片的时候,这张图片可能是多种颜色集合
转载
2023-06-16 13:05:13
997阅读
应用:图像拼接、图像匹配特征检测和提取算法:Harris(检测角点)SIFT(检测斑点blob)SURF(检测斑点)FAST(检测角点)BRIEF(检测斑点)ORB(带方向的FAST算法与具有旋转不变性的BRIEF算法)特征匹配算法:暴力匹配(Brute-Force)基于FLANN匹配。特征:特殊的图形区域、独特性和易于识别性--角点和高密度区域。大量重复区域和低密度区域不适合作为特征,边缘时很好
转载
2023-12-04 18:52:04
87阅读