2022/12/27 有的小伙伴说maven导入不了依赖,加了一种方法,百分百解决。2022/12/28 写了半天,想去论坛放松休息下,结果看到别人已经有成品了,难受啊马飞,晚点看情况要不要写个搭建使用方法(我猜没人看,估计也不用写了,就当自己做个记录)!1.opencv for java 环境搭建和测试1.到OpenCV官网下载你需要的版本,运行安装,记住安装目录。2.打开上一步安装的位置,依次
 1、小波变换概述  小波变换是一种信号处理技术,用于将信号分解为不同尺度(频率)和位置(时间)的小波基函数,从而提供信号在时间和频率上的局部特征。这使得小波变换在处理非平稳信号(信号特性随时间变化)方面更有优势,与傅里叶变换相比更加灵活。  小波变换的基本思想是将信号表示为小波基函数的线性组合,这些小波基函数可以是平移和缩放后的原始小波母函数。通过对信号进行小波变换
图像特征的匹配通过对图像提取特征后,得到特征点和描述特征点信息的特征向量,在对图像的检索和匹配当中主要通过对描述符[特征向量]的计算来实现,下面主要通过ORB来进行图像特征的提取,使用不同的算法来实现图像的匹配.1.暴力匹配(Brute-Force)2.K-临近匹配3.FLANN匹配(Fast Library for Approximate Nearest Neighbors)www.cs.ubc
 目录:1、确定描述采样区域2、生成描述  2.1 旋转图像至主方向  2.2 生成特征向量3、归一化特征向量附:SIFT开源代码集1 确定描述采样区域  SIFI 描述h(x, y, θ)是对特征点附近邻域内高斯图像梯度统计结果的一种表示,它是一个三维的阵列,但通常将它表示成一个矢量。矢量是通过对三维阵列按一定规律进行排列得到的。特征描述与特征点所在的尺度有关,因此
转载 2024-07-31 18:11:01
117阅读
目标本节我们将要学习:• 另外一个角点检测技术:Shi-Tomasi 焦点检测• 函数:cv2.goodFeatureToTrack()原理上一节我们学习了 Harris 角点检测,后来 1994 年,J.Shi 和 C.Tomasi在他们的文章《Good_Features_to_Track》中对这个算法做了一个小小的修改,并得到了更好的结果。我们知道 Harris 角点检测的打分公式为: 但 S
一 不同色彩空间的转换OpenCV中有数百种关于在不同色彩空间之间转换的方法。当前,在计算机中有三种常用的色彩空间:灰度,BGR以及HSV(Hue,Saturation,Value)。灰度色彩空间是通过去除色彩信息来将其转换成灰阶,灰度色彩空间对中间处理特别有效,比如人脸检测。BGR,即蓝-绿-红色彩空间,每一个像素点都由一个三元数组来表示,分别代表蓝、绿、红三种颜色。网页开发者可能熟悉另一个与之
目录前言滤波操作二维滤波(二维卷积)线性滤波方框滤波/均值滤波高斯滤波 前言滤波分为线性滤波和非线性滤波两种,线性滤波中有方框滤波、均值滤波和高斯滤波三种,非线性滤波则有中值滤波和双边滤波两种。在介绍滤波方式之前先以二维滤波的形式介绍滤波的运算。滤波操作二维滤波(二维卷积)用二维滤波的方法选取不同的卷积核可以实现各种不同的效果,虽然OpenCV中内置函数能实现不同的操作,但是通过自己构建卷积核矩
用ffmpeg解码,并且将解码后的视频传入opencv。通过查找相关资料进行快速学习实现了这个需求。现进行简单的记录和分享。ffmpeg 解码函数:len = avcodec_decode_video2(pInputCodecContext, dst, &nComplete, &InPack);     dst 为 AVFrame *dst,
转载 2024-03-13 13:31:58
50阅读
图像中的离散傅里叶变换的相关理论较为简单,频域里面,对于一幅图像,高频部分代表了图像的细节、纹理信息;低频部分代表了图像的轮廓信息。 这里我们直接讲解OpenCV3.0中的离散傅里叶变换 1.dft()函数详解 dft()函数的作用是对一维或者二维浮点数组进行正向或反向离散傅里叶变换。 C++:void dft(InputArray src,OutputArray dst,int flag
一直以来,笔者对Matlab程序关于快速傅里叶变换的定义不甚了解,只是大致明白利用该公式可以方便快速地实现数据在时域(时间域)和频域(频率域)之间的转换,但是对其中变换核的离散形式为什么这么定义却摸不着头脑。直到前一阵子笔者才弄明白(其实也不是很复杂的问题,只是一直没有深究下去......),现在和读者朋友们分享一下其中的意义。首先看一下Matlab中关于fft是怎么定义的。下面是笔者电脑中安装
VS2015编译OPENCV4.2下载opencv4.2源代码及opencv_contrib源代码https://opencv.org/releases/将opencv_contrib放在opencv文件夹下在opencv创建一个文件夹CUDA_VS2015,用于存放转换openc工程源代码;打开CMake-gui.exe,选择opencv源代码、CUDA_VS2015:点击“Configure”
转载 2024-07-22 13:35:46
39阅读
https://blog.csdn.net/chishuideyu/article/details/78132093 LBD线段描述 ...
转载 2021-10-18 20:53:00
268阅读
2评论
图2:在本教程中,我们将使用OpenCV和NumPy的组合在图像和视流中进行基于快速傅立叶变换(FFT)的模糊检测。快速傅里叶变换
原创 2024-07-31 11:16:42
469阅读
离散傅里叶变换步骤:第一步:将图像扩大到合适的尺寸离散傅里叶变换的运行速度跟图片尺寸有很大关系,当图片面积为 2、3、5 的倍数时 DFT 执行效率最快,因此为了达到 DFT 的执行效率最快,经常通过添凑新的边缘像素来获取最大图像尺寸。计算需要扩展的行数和列数 OpenCV 为我们提供了这样一个函数 int getOptimalDFTSize(int vecsize),这个函数传入一个原矩阵的行数
转载 2024-04-11 14:14:23
104阅读
特征描述目标在本教程中,我们将涉及:理论代码这个教程代码如下所示. 你还可以 ​​​​#include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/hi
转载 2016-03-18 15:20:00
83阅读
  1 #include <stdio.h> 2 #include <iostream> 3 #include "opencv2/core/core.hpp" 4 #include "opencv2/features2d/features2d.hpp" 5 #include "opencv2/highgui/highgui.hpp" 6 7 using n
转载 2020-01-09 13:33:00
151阅读
2评论
opencv介绍:计算机视觉和机器学习库,实现了图像处理和计算机视觉方面的很多通用算法安装:pip(conda) install opencv-pythonopencv简单使用import cv2 #1. 读取图片 img = cv2.imread("opencv_image/dong.jpg") # print(img.shape)# (300, 400, 3) 分别是 高、宽、像素 pr
目录均值滤波它的函数:        特点方框滤波函数 特点归一化定义与作用高斯滤波 函数 效果图 特点中值滤波函数效果图 特点opencv中入门的四个滤波函数:均值滤波方框滤波高斯滤波中值滤波均值滤波简单的说就是在以目标像素点为中心的一个矩阵中,我们将矩阵中的所有像素
opencv-python   4.0.11 函数释义词义:发现轮廓!从二进制图像中查找轮廓(Finds contours in a binary image);轮廓是形状分析和物体检测和识别的有用工具。 findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours, hi
使用C++、opencv获取轮廓的傅里叶描述傅里叶描述是一种图像特征,具体来说,是一个用来描述轮廓的特征参数。其基本思想是用物体边界信息的傅里叶变换作为形状特征,将轮廓特征从空间域变换到频域内,,提取频域信息作为图像的特征向量。即用一个向量代表一个轮廓,将轮廓数字化,从而能更好地区分不同的轮廓,进而达到识别物体的目的。关于傅里叶描述的概述可参考论文(http://www.doc88.com/
  • 1
  • 2
  • 3
  • 4
  • 5