是什么 SparkSql 是Spark提供的 高级模块,用于处理结构化数据,开发人员可以使用HiveQL 和SQL语言 实现基于RDD的大数据分析, 底层基于RDD进行操作,是一种特殊的RDD,DataFrameRDD类型 1. 将SQL查询与Spark无缝混合,可以使用SQL或者Da
转载
2023-08-10 20:44:14
114阅读
1.1 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用 它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所有S
转载
2023-07-11 20:00:57
108阅读
# Spark SQL RDD实现的步骤
## 步骤概览
下面是实现"spark sql rdd"的步骤概览表格:
| 步骤 | 描述 |
| ------ | ------ |
| 步骤1 | 创建SparkSession对象 |
| 步骤2 | 读取数据源 |
| 步骤3 | 将数据源转换为RDD |
| 步骤4 | 定义Schema |
| 步骤5 | 将RDD应用于Schema |
原创
2023-11-16 16:32:28
60阅读
RDD是spark抽象的基石,可以说整个spark编程就是对RDD进行的操作
RDD是弹性的
分布式数据集,它是
只读的,
可分区的,这个数据集的全部或者部分数据可以缓存在内存中,在多次计算间重用。所谓的弹性意思是:
内存不够时可以与磁盘进行交换。这是RDD另一个特性:内存计算。就是将数据保存到内存中,同时为了
转载
2024-06-17 14:30:40
43阅读
1. Spark SQL概述1.1 什么是Spark SQLSpark SQL是Spark用来处理结构化数据的一个模块,它提供了两个编程抽象分别叫做DataFrame和DataSet,它们用于作为分布式SQL查询引擎。从下图可以查看RDD、DataFrames与DataSet的关系。1.2 为什么要学习Spark SQLHive,它是将Hive SQL转换成MapReduce,然后提交到集群上执行
转载
2023-08-08 21:13:40
165阅读
基本原理Spark SQL用于处理结构化数据的Spark模块,兼容但不受限于Hive。而Hive不受限于单一引擎,可以采用Spark, Map-Reduce等引擎。 SparkSQL可以简化RDD的开发,提高开发效率,提升执行效率,其提供了DataFrame与DataSet两个编程抽象,类似Spark Core的RDD。Spark SQL特点:易整合:整合Spark编程与SQL查询统一的数据访问:
转载
2023-09-04 11:16:59
111阅读
RDD简述RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象。代码中是一个抽象类,它代表一个不可变、可分区、里面的元素可并行计算的集合RDD属性 RDD官方文档中给出5个主要的属性1一组分区(Partition),即数据集的基本组成单位2一个计算每个分区的函数3RDD之间的依赖关系4一个Partitioner,即RDD的分
转载
2023-06-16 19:01:21
86阅读
# 如何实现Spark SQL和RDD转
## 1.整体流程
在实现Spark SQL和RDD转换的过程中,我们需要遵循以下步骤:
```mermaid
gantt
title Spark SQL和RDD转换流程
section 数据准备
准备数据集合 :done, dataPrep, 2022-01-01, 1d
sectio
原创
2024-05-14 05:20:41
130阅读
# Spark SQL多个RDD连接
随着数据量的不断增长,处理大规模数据的需求也变得越来越迫切。Spark是一个基于内存计算的大数据处理框架,它提供了丰富的API和功能,包括Spark SQL,能够提供高效的数据处理和分析能力。在Spark SQL中,我们可以使用多个RDD进行连接操作,以实现更复杂的数据处理需求。
## 什么是RDD
RDD(Resilient Distributed D
原创
2024-04-06 03:25:03
66阅读
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、基本概念1.RDD的生成2.RDD的存储3.Dependency4.Transformation和Action4.1 Transformation操作可以分为如下几种类型:4.1.1 视RDD的元素为简单元素。4.1.2 视RDD的元素为Key-Value对:4.2 Action操作可以分为如下几种:5.shuffl
转载
2023-11-14 09:26:59
105阅读
窄依赖所谓窄依赖就是说子RDD中的每个分区(partition)只依赖于父RDD中有限个数的partition。在API中解释如下: 窄依赖在代码中有两种具体实现,一种是一对一的依赖:OneToOneDependency,从其getparent方法中不难看出,子RDD只依赖于父 RDD相同ID的Partition。另外一种是范围的依赖,RangeDependency,它仅仅被org.apache
转载
2023-06-11 15:26:05
137阅读
一、Spark包括什么spark的核心是Spark Core,其中上面的Spark Sql对接的是Hive等结构化查询,Spark Streaming是对接的流式计算,后面的那两个也是主要用在科学任务中,但是他们的基础都是spark core,而Spark core的核心就是RDD操作,RDD的操作重要的就是算子,也就是说,掌握了算子基本上就掌握了spark的基础。二、RDD1、是什么? 
# Spark SQL 原理与 RDD 的关系
在这里,我们将探讨 Spark SQL 的原理以及它与 RDD(弹性分布式数据集)的关系。Spark SQL 是 Apache Spark 的一个模块,用于处理结构化数据。当我们使用 Spark SQL 时,它可以将 SQL 查询转换为 RDD 操作,从而利用 Spark 的分布式计算能力。
## 整体流程
理解 Spark SQL 原理与 R
弹性分布式数据集(RDD)不仅仅是一组不可变的JVM(Java虚拟机) 对象的分布集,可以让你执行高速运算,而且是Apark Spark的核心。顾名思义,该数据集是分布式的。基于某个关键字,该数据集被划分成多块,同时分发到执行结点。这样做可以使得此类数据集能够执行高速执行运算。另外,RDD将跟踪(记入日志)应用于每个块的所有转换,以加快计算速度,并在发生错误和部分数据丢失时提供回退。在这种情况...
原创
2022-03-15 14:06:34
172阅读
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。
原创
2023-06-10 00:35:02
90阅读
原因1:优秀的数据模型和丰富的计算抽象Spark出现之前,已经有了非常成熟的计算系统MapReduce,并提供高级API(map/reduce),在集群中运行计算,提供容错,从而实现分布式计算。虽然MapReduce提供了数据访问和计算的抽象,但是数据的重用只是简单地将中间数据写入一个稳定的文件系统(比如HDFS),所以会产生数据复制备份、磁盘I/O和数据序列化,所以在多个计算中遇到需要重用中间结
弹性分布式数据集(RDD)不仅仅是一组不可变的JVM(Java虚拟机) 对象的分布集,可以让你执行高速运算,而且是Apark Spark的核心。顾名思义,该数据集是分布式的。基于某个关键字,该数据集被划分成多块,同时分发到执行结点。这样做可以使得此类数据集能够执行高速执行运算。另外,RDD将跟踪(记入日志)应用于每个块的所有转换,以加快计算速度,并在发生错误和部分数据丢失时提供回退。在这种情况...
原创
2021-08-04 13:56:33
192阅读
RDD是“Resilient Distributed Dataset”的缩写,从全称就可以了解到RDD的一些典型特性。Resilient(弹性):RDD之间会形成有向无,数据库等。
原创
2024-04-30 14:59:51
316阅读
spark常用RDD操作,操作包括两种类型,即转换(Transformation)操作和行动(Action)操作一、转换操作(Transformation)1、filter(func)筛选出满足函数func的元素,并返回一个新的数据集 例:val lines=sc.textFile("file:///usr/local/spark/mycode/rdd/word.txt")
val linesWi
转载
2023-06-19 05:51:18
0阅读
学习spark最基本的概念就时RDD(Resilient Distributed Datasets弹性分布式数据集)RDD五大特性我画了一个丑丑的图,这里我们将RDD图形化一下,更容易理解在RDD源码里面,它规定了五大特性:A list of partitions向图中一样由一系列分区组成,分割分区在不同节点之上A function for computing each split每个分片都有函数
转载
2023-08-08 08:39:21
82阅读