一、定义类别不平衡是指分类任务中不同类别的训练样例数目差别很大的情况。二、问题:从线性分类器角度讨论,用y = wTx+b对新样本x进行分类,事实上是用预测出的y值与一个阈值进行比较,例如通常在y>0.5时判别为正例,否则为反例。y表达的是正例的可能性,几率y/1-y反映了正例可能性与反例可能性之比例,阈值设置为0.5恰表明分类器认为真实正、反例可能性相同,即分类器决策规则为若y/1-y &
一、什么是类不平衡在分类中经常会遇到:某些类别数据特别多,某类或者几类数据特别少。如二分类中,一种类别(反例)数据特别多,另一种类别(正例)数据少的可怜。如银行欺诈问题,客户流失问题,电力盗窃以及罕见疾病识别等都存在着数据类别不均衡的情况。二、为什么要对类不平衡进行特殊处理传统的分类算法旨在最小化分类过程中产生的错误数量。它们假设假阳性(实际是反例,但是错分成正例)和假阴性(实际是正例,但是错分为
不平衡数据分类算法介绍与比较介绍在数据挖掘中,经常会存在不平衡数据的分类问题,比如在异常监控预测中,由于异常就大多数情况下都不会出现,因此想要达到良好的识别效果普通的分类算法还远远不够,这里介绍几种处理不平衡数据的常用方法及对比。符号表示记多数类的样本集合为L,少数类的样本集合为S。用r=|S|/|L|表示少数类与多数类的比例基准我们先用一个逻辑斯谛回归作为该实验的基准: Weighte
转载 2023-05-18 11:28:37
351阅读
# 深度学习类别不平衡抽样公式 作为一名经验丰富的开发者,我很高兴能帮助刚入行的小白理解深度学习类别不平衡抽样的实现方法。类别不平衡深度学习中常见的问题,它会导致模型对少数类的表现不佳。为了解决这个问题,我们可以使用抽样技术来平衡训练数据。以下是实现这一过程的详细步骤。 ## 流程图 首先,我们通过流程图来展示整个抽样过程: ```mermaid flowchart TD A[
原创 3月前
25阅读
文章目录分类任务中的不平衡问题解决思路1、重采样类2、平衡损失类3、集成方法类4、异常检测、One-class分类等长尾分布问题的其他视角小结 分类任务中的不平衡问题分类任务中的样本不平衡问题,主要是不同类别之间样本数量的不平衡,导致分类器倾向于样本较多的类别,在样本较少的类别上性能较差。样本不均衡问题常常出现在呈长尾分布的数据中(long tailed data),如下图所示1。现实生活中很多
一、样本不均衡所谓的不均衡指的是不同类别(标签)的样本量差异非常大。样本类别分布不均衡主要出现在分类相关的建模问题上。样本不均衡将导致样本量小的分类所包含的特征过少,并很难从中提取规律;即使得到分类模型,也容易产生过度依赖于有限的数据样本而导致过拟合的问题,当模型应用到新的数据上时,模型的准确性和健壮性将很差。样本不均衡从数据规模的角度分为:大数据分布不均衡:例如1000万条数据集中,50万条的小
机器学习不平衡数据处理一、不平衡数据集1.1 不平衡数据集定义1.2 处理方法1.2.1 欠采样1.2.2 过采样1.2.3 阈值移动 一、不平衡数据集1.1 不平衡数据集定义不平衡数据集指的是数据集各个类别的样本量极不均衡。以二分类问题为例,假设正类的样本数量远大于负类的样本数量,通常情况下把样本比例接近100:1这种情况下的数据称为不平衡数据。1.2 处理方法1.2.1 欠采样欠采样:Ea
类别不平衡问题:类别不平衡问题指分类任务中不同类别的训练样本数目差别很大的情况。一般来说,不平衡样本会导致训练模型侧重样本数目较多的类别,而“轻视”样本数目较少类别,这样模型在测试数据上的泛化能力就会受到影响。一个例子,训练集中有99个正例样本,1个负例样本。在不考虑样本不平衡的很多情况下,学习算法会使分类器放弃负例预测,因为把所有样本都分为正便可获得高达99%的训练分类准确率。数据集方面进行处理
传统处理方法1.加权即其对不同类别分错的代价不同,这种方法的难点在于设置合理的权重,实际应用中一般让各个分类间的加权损失值近似相等。当然这并不是通用法则,还是需要具体问题具体分析。和代价敏感类似  有如下加权方法:  概率权重法:当数量差距不那么悬殊时,把各类标签的实例出现的频率比作权重,此特征权重来源于数据本身,能够较好的适应数据集的改变;2.采样采样方法是通过对训练集进行处理使其从不平衡的数据
文章目录前言一、二元不平衡数据集二、应用领域三、评价指标略(参考论文的评价指标)四、数据级别4.1过采样4.2欠采样4.3混合方法五、算法级别六、集成级别总结 前言不平衡数据集的部分分类或分类问题,是机器学习中的一个基本问题,受到广泛的关注。主要从三个级别进行考虑:算法级别、数据级别、混合级别一、二元不平衡数据集在二元不平衡数据集中,一类的实例数高于第二类的实例数。 因此,第一类被称为多数派,第
目录概念解决方案一、数据层面1、重采样2、训练集划分方法二、算法层面1、 分类器集成方法2、 代价敏感方法3、 特征选择方法4、其他算法分类器评价指标(1)F-measure(2)G-mean(3)ROC 曲线以及 AUC概念类别数据不均衡是分类任务中一个典型的存在的问题。简而言之,即数据集中,每个类别下的样本数目相差很大。例如,在一个二分类问题中,共有100个样本(100行数据,每一行数据为一个
# 如何处理 Python 中的类别不平衡问题 在机器学习和数据挖掘的领域中,类别不平衡是一个常见且令人头痛的问题。类别不平衡指的是数据集中某些类别的样本数量远远少于其他类别的情况。这种不平衡会导致模型的训练偏向于数量较多的类别,最终使得模型在少数类别上的预测能力不强。 在这篇文章中,我们将对如何处理类别不平衡的步骤进行详尽的讲解,从而帮助你更有效地理解和解决这个问题。以下是处理类别不平衡的流
原创 1月前
24阅读
详解类别不平衡问题卢总-类别不平衡问题的方法汇总 文章目录从多数类别中删除数据(ENN、Tomeklink、NearMiss)ENNNearMiss为少数类生成新样本(SMOTE、Borderline-SMOTE、ADASYN)集成方法EasyEnsemble算法BalanceCascade算法算法层面在线困难样本挖掘 OHEMFocal Loss 损失函数的权重调整阈值移动评价指标从多数类别中删除数据(ENN、Tomeklink、NearMiss)ENNNearMiss非均衡数据处理–如何学习
原创 2021-08-04 10:49:55
1478阅读
       所谓类别不平衡问题就是分类任务中不同类别的训练案例数目差别极其大的情况。不是一般性,我们在这里讨论二分类问题中正例个数远远少于反例的情形。常见的处理平衡数据集的办法主要有: 1.阈值移动(Threshold Moving):      通常我们预测类别的方法是学习得到正例概率$P$,如果:\begin{
1.  什么是数据不平衡问题       当数据集中样本类别不均衡时我们就说发生了数据不平衡问题。2.  解决数据不平衡问题的方法       为了方便起见,把数据集中样本较多的那一类称为“大众类”,样本较少的那一类称为“小众类”。2.1. 采样法      &nbsp
很多分类学习方法针对都有一个共同的基本假设,即不同类别的训练数据数目相当,即使稍有差别,通常影响不大。但如果差别较大,就会对学习过程造成困扰。在现实场景中,比如银行欺诈,异常登录,网络入侵等领域中,大多数数据通常有不到1%少量但异常数据。这就使得对于处理不平衡数据有着及其重要的意义。1.使用正确的评估指标例如对于有998个的反例,但正例只有2个,那么学习方法只要返回一个永远把样本预测为反例的学习
# Python类别不平衡数据处理 ## 引言 在机器学习任务中,数据的类别不平衡是一个普遍存在的问题。类别不平衡指的是不同类别的样本数量差异很大,通常其中一类的样本数量远远超过其他类别的样本数量。这种情况下,机器学习模型往往会偏向于预测数量较多的类别,导致对于数量较少的类别的预测效果较差。因此,处理类别不平衡的数据是机器学习任务中一个重要的挑战。 本文将介绍一些常用的处理类别不平衡数据的方
原创 2023-08-16 08:23:03
127阅读
解决不平衡问题?类别不平衡(class-imbalance)就是指分类任务中不同类别的训练样例数目差别很大的情况。在现实的分类学习任务中,我们经常会遇到类别不平衡,例如在通过拆分法解决多分类问题时,即使原始问题中不同类别的训练样例数目相当,在使用OvR(一对其余,One vs. Rest,简称OvR)、MvM(多对多,Many vs. Many,简称MvM)策略后产生的二分类任务扔可能出现类别不平
数据层面的处理方法总的来说分为数据扩充和数据采样法,数据扩充会直接改变数据样本的数量和丰富度,采样法的本质是使得输入到模型的训练集样本趋向于平衡,即各类样本的数目趋向于一致。
推荐 原创 2022-12-07 22:09:09
494阅读
原创 2021-09-08 13:22:40
996阅读
  • 1
  • 2
  • 3
  • 4
  • 5