概述定义数据不平衡分类是对各类别间样本的数目相差较大的数据集进行分类。例如:二分类问题中,一个样本总数为100,80个样本被标为类别1,剩下的20个样本被标为类别2。类别1比类别2的样本总数为4:1。这是一个不平衡数据集。实际生活中,故障检测,癌症检测,石油勘探都是不平衡数据。传统分类器对于不平衡数据的不适用性传统分类方法有:决策树法,朴素贝叶斯分类器,支持向量机,K近邻法,多层感知器等。其中,
# 不平衡图像分类的PyTorch实现 在深度学习领域,图像分类是一个重要的任务。然而,当数据集中的类别数量不平衡时,模型的表现可能会受到严重影响。本文将指导你如何使用PyTorch实现不平衡图像分类,分为几步详细讲解。 ## 流程概述 下表列出了实现不平衡图像分类的基本步骤: | 步骤 | 描述 | |------
原创 2024-09-25 08:06:23
74阅读
图像分类任务中数据增广的两种方式在图像分类任务中,为了提高模型的准确度及提升其泛化能力,我们通常会对数据进行增广处理,常用的操作有裁剪、缩放、镜像,颜色空间转换等,下面介绍图像增广的两种方式,PIL.ImageEnhance和keras…ImageGenerator。一、使用PIL.ImageEnhance多线程进行图像强化增广# -*- coding:utf-8 -*- """数据增强 1
FocalLoss 的出现,主要是为了解决 anchor-based (one-stage) 目标检测网络的分类问题。后面实例分割也常使用。注意 这里是 目标检测网络的分类问题,而不是单纯的分类问题,这两者是不一样的。 区别在于,对于分配问题,一个图片一定是属于某一确定的类的;而检测任务中的分类,是有大量的anchor无目标的(可以称为负样本)。 分类任务正常的 K类分类任务 的标签,是用一个K
一、数据不平衡1.1 什么是数据不平衡在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布是均匀的。当我们把这些算法直接应用于实际数据时,大多数情况下都无法取得理想的结果。因为实际数据往往分布得很不均匀,都会存在“长尾现象”,也就是所谓的“二八原理”。以二分类问题为例,假设正类的样本数量远大于负类的样本数量,通常情况下把样本类别比例超过4:1(也有说3:1)的数据就可以称为不平衡数据不平
常用的分类算法一般假设不同类的比例是均衡的,现实生活中经常遇到不平衡数据集,比如广告点击预测(点击转化率一般都很小)、商品推荐(推荐的商品被购买的比例很低)、信用卡欺诈检测等等。对于不平衡数据集,一般的分类算法都倾向于将样本划分到多数类,体现在整体的准确率很高。但对于极不均衡的分类问题,比如仅有1%的人是坏人,99%的人是好人,最简单的分类就是将所有人都划分为好人,都能得到99%的准确率,显然这
数据不平衡1.什么是数据不平衡一般都是假设数据分布是均匀的,每种样本的个数差不多,但是现实情况下我们取到的数据并不是这样的,如果直接将分布不均的数据直接应用于算法,大多情况下都无法取得理想的结果。这里着重考虑二分类,因为解决了二分类种的数据不平衡问题后,推而广之酒能得到多分类情况下的解决方案。经验表明,训练数据中每个类别有5000个以上样本,其实也要相对于特征而言,来判断样本数目是不是足够,数据
图像分类中的tricks分享前言:前不久,应导师的要求,给学弟学妹们讲解一下图像分类任务训练模型的技巧,哇,一听我就急了,这我哪会啊,奈何也不能反抗,于是搜了一星期的资料,做了个非常简陋的PPT和讲稿就上阵了。现在贴在这里,才疏学浅,有什么错误的地方,欢迎各位大佬指正。之后随着我更多的具体实践,可能会继续补充这篇文章,谢谢各位的补充和支持。我记得我之前做过的关于图像分类的实验有手写数字识别、Cif
1. 数据不平衡问题所谓的不平衡指的是不同类别的样本量差异非常大,或者少数样本代表了业务的关键数据(少量样本更重要),需要对少量样本的模式有很好的学习。样本类别分布不平衡主要出现在分类相关的建模问题上。 样本类别分布不均衡从数据规模上可以分为大数据分布不均衡和小数据不均衡。分布不均衡两种:大数据分布不均衡——整体数据规模较大,某类别样本占比较小。例如拥有1000万条记录的数据集中,其中占比5万条的
       所谓类别不平衡问题就是分类任务中不同类别的训练案例数目差别极其大的情况。不是一般性,我们在这里讨论二分类问题中正例个数远远少于反例的情形。常见的处理非平衡数据集的办法主要有: 1.阈值移动(Threshold Moving):      通常我们预测类别的方法是学习得到正例概率$P$,如果:\begin{
最近在做的项目的数据集里的数据分布非常不平衡,虽然是简单的二分类任务,但是两类数据的比例相差有两个数量级。实现的代码里大多数没有针对这个问题做专门的处理,只是在预测时简单的调小了阈值。因此查了一些解决数据分布不平衡的方法,在这里先总结一下,后面会单独挑出一些方法实现,并针对相应的代码和效果在写一篇文章。1.重新采样训练集可以使用不同的数据集。有两种方法使不平衡数据集来建立一个平衡数据集——欠采
文章目录focal loss 提出的场景和针对的问题focal loss 提出的场景:目标检测focal loss 针对的问题:类别不平衡如何处理目标检测下的类别不平衡如何理解目标检测场景下的样本和类别two-stageone-stagefocal loss的算法focal loss的思想focal loss的局限假设的局限适用场景的局限focal loss用于图像分类 focal lo
数据不平衡的应对在比赛中经常会遇到数据不平衡的问题,各个类别之间的数据不平衡容易导致模型对数据量少的类别的检测性能较低。数据不平衡问题可以分为以下两种情况:大数据分布不均衡。这种情况下整体数据规模大,只是其中的少样本类的占比较少。但是从每个特征的分布来看,小样本也覆盖了大部分或全部的特征。例如拥有1000万条记录的数据集中,其中占比50万条的少数分类样本便于属于这种情况。小数据分布不均衡。这种
# 用Python实现不平衡数据分类的完整指南 在机器学习中,不平衡数据分类是一项常见的挑战。由于分类数据的类标签分布不均,这可能导致机器学习模型在少数类上的表现不佳。本文将为你展示如何使用Python处理不平衡数据分类,包括必要的步骤和代码示例。 ## 整体流程 以下是处理不平衡数据分类的主要步骤: | 步骤 | 描述
原创 10月前
69阅读
一、前言1、前广泛使用的图像分类数据集之一是 MNIST 数据集,虽然它是很不错的基准数据集,但按今天的标准,即使是简单的模型也能达到95%以上的分类准确率,因此不适合区分强模型和弱模型。2、为了提高难度,我们将在接下来的章节中讨论在2017年发布的性质相似但相对复杂的Fashion-MNIST数据集 二、读取数据集%matplotlib inline import torch impo
目录数据不平衡处理常见处理方法1. 欠采样(下采样、Under-sampling、US)2. 过采样(上采样、over-sampling )3. 模型算法评价指标NLP数据增强1. UDA (Unsupervised Data Augmentation)【推荐】2. EDA (Easy Data Augmentation) 数据不平衡处理常见处理方法1. 欠采样(下采样、Under-sampli
目录概念解决方案一、数据层面1、重采样2、训练集划分方法二、算法层面1、 分类器集成方法2、 代价敏感方法3、 特征选择方法4、其他算法分类器评价指标(1)F-measure(2)G-mean(3)ROC 曲线以及 AUC概念类别数据不均衡是分类任务中一个典型的存在的问题。简而言之,即数据集中,每个类别下的样本数目相差很大。例如,在一个二分类问题中,共有100个样本(100行数据,每一行数据为一个
数据:思维、技术、交易和人性Python爬虫大数据采集与挖掘(PPT、代码、视频)大都数分类器假设输入的数据是理想的,不同类别样本数量是均衡的。但是,在现实中也经常遇到非平衡数据分类,比如信用卡欺诈检测、入侵检测等,相比于正常类数据,欺诈类、异常类数据在实际中能获得的数量是很有限的。一、数据层的主要方法       基于数据层的SMOTE算法(2002)是
一、图像分类1.1 模型是如何将图像分类的? 对于蜜蜂蚂蚁二分类模型: 从人的角度来看,是从输入一张RGB图像到输出一种动物的过程 从计算机角度看,是从输入3-d张量到输出字符串的过程类别名是通过标签进行转换得到的,在这里也就是0和1,而输出的0,1则是通过模型输出的向量取最大值而得到的,而模型输出向量则是通过构造复杂的模型而得到的实际的运行顺序: 输入3d张量到模型中,模型经过复杂的数学运算,输
1.什么是类别不平衡问题如果不同类别的训练样例数目稍有差别,通常影响不大,但若差别很大,则会对学习过程造成困扰。例如有998个反例,但是正例只有2个,那么学习方法只需要返回一个永远将新样本预测为反例的学习器,就能达到99.8%的精度;然而这样的学习器往往没有价值,因为它不能预测出任何正例。类别不平衡(class-imbalance)就是指分类任务中不同类别的训练样例数目差别很大的情况。在现实的分类
  • 1
  • 2
  • 3
  • 4
  • 5