Kmeans 是一种动态聚类方法,其基本思想是:首先随机选取 K 个点作为初始凝聚点,按照距离最近原则划分为 K 类;然后重新计算 K 个类的重心作为新的凝聚点,再按照距离最近原则重新分类;重复这一过程,直到重心不再变化为止。下面是一个简单利用 kmeans 聚类分析的例子,数据为某一年全国31个省市的居民消费支出数据:食品衣着居住家庭设备交通通讯文教娱乐医疗保健其他北京4215.561184.1
转载
2023-08-18 15:07:09
89阅读
k-means聚类算法K-means聚类算法是一种常用的聚类算法,它是重复移动数据类中心的过程,然后划分内部成员,其具体执行过程如下:1.首先随机选取k个样本作为初始均值向量2.计算每一个样本与均值向量之间的欧式距离,选取与当前样本欧式距离最小均值向量的类别作为当前样本的类别3.计算每一个类别的向量的均值重新作为新的均值向量4.重复2-3的过程直到均值向量没有变化或者达到一定的迭代次数结束本文采用
转载
2023-08-14 23:25:47
87阅读
0 前言K-Means是聚类算法的一种,通过距离来判断数据点间的相似度并据此对数据进行聚类。1 聚类算法 科学计算中的聚类方法
方法名称参数可伸缩性用例几何形状(使用的指标)K-Meansnumber of clustersVery large , medium with MiniBatch coden_samplesn_clustersGeneral-purpose, even clus
转载
2023-08-10 22:15:35
164阅读
一.kmeans算法的简介。 K-means聚类算法也称k均值聚类算法,是集简单和经典于一身的基于距离的聚类算法。它采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。聚类与分类的区别:聚类:物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对
转载
2024-05-05 17:43:11
89阅读
在开始k-means算法之前,我们先了解一下什么是聚类分析?聚类分析就是将数据划分成有意义或有用的组(簇),根据在数据中发现的描述对象及其关系的信息,将数据对象分组。其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的。所以很明确,这个算法是为了分类数据的,一般适用于市场细分、目标顾客定位、生物种群划分等邻域所以,k-means算法怎么理解呢?其中的k是聚类算法当中类的个数。 means
转载
2023-08-14 23:00:23
138阅读
该算法可以将数据划分为指定的k个簇,并且簇的中心点由各簇样本均值计算所得 该聚类算法的思路非常通俗易懂,就是不断地计算各样本点与簇中心之间的距离,直到收敛为止,其具体的步骤如下: (1)从数据中随机挑选k个样本点作为原始的簇中心。 (2)计算剩余样本与簇中心的距离,并把各样本标记为离k个簇中心最近的类别。 (3)重新计算各簇中样本点的均值,并以均值作为新的k个簇中心。 (4)不断重复(2)和(3)
转载
2023-08-17 17:21:56
928阅读
1 聚类分析相关概念 1.1 聚类与分类 分类其实是从特定的数据中挖掘模式,作出判断的过程。比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都不过滤,在日常使用过程中,我人工对于每一封邮件点选“垃圾”或“不是垃圾”,过一段时间,Gmail就体现出一定的智能,能够自动过滤掉一些垃圾邮件了。这是因为在点选的过程中,其实是给每一条邮件
基于Python的Kmeans聚类分析介绍及实践这是一篇学习的总结笔记聚类算法是依据已知的数据集,将高度相似的样本集中到各自的簇中。例如,借助于电商平台用户的历史交易数据,将用户划分为不同的价值等级(如VIP、高价值、潜在价值、低价值等);依据经度、纬度、交通状况、人流量等数据将地图上的娱乐场所划分为不同的区块(如经济型、交通便捷型、安全型等);利用中国各城市的经济、医疗状况等数据将其划分为几种不
转载
2024-01-24 21:18:30
524阅读
Kmeans聚类算法1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。假设要把样本集分为k个类别,算法描述如下: (1)适当选择k个类的初始中心,最初一般为随机选取; (2)在每次迭
转载
2023-08-12 15:14:24
111阅读
一,介绍 K-Means是一种经典的无监督的聚类算法。它比较简单,易于实现并且应用很广泛。二,原理 K-Means算法的思想很简单,对于给定的数据集: 1)将各个聚类内的所有样本的均值作为该聚类的代表点, 2)计算每个样本到各个均值的距离, 3)取最小距离的均值所在类别作为样本类别,从而数据集划分为K个类, 4)再重新计算每个聚类的均值,继续2)3),依次迭代,直到均值不再
转载
2023-08-14 14:33:59
582阅读
一、基础知识一句话概括,K-means方法是一种非监督学习的算法,它解决的是聚类问题;其划分方法的基本思想是:给定一个有N个元组或者记录的数据集,将数据集依据样本之间的距离进行迭代分裂,划分为K个簇,其中每个簇至少包含一条实验数据。二、作业练习使用protein.txt文件内数据做k-means聚类的过程验证练习,要求:1. 在答题区提交程序脚本,并将聚类结果储存在向量(kmeans.result
转载
2023-09-27 09:11:11
95阅读
今天用python实现了一下简单的聚类分析,顺便熟悉了numpy数组操作和绘图的一些技巧,在这里做个记录。from pylab import *
from sklearn.cluster import KMeans
## 利用numpy.append()函数实现matlab多维数组合并的效果,axis 参数值为 0 时是 y 轴方向合并,参数值为 1 时是 x 轴方向合并,分别对应matlab
转载
2024-08-14 11:46:53
82阅读
注意点:一定要处理异常值和去量纲导入库import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline一、数据概况异常值 缺失值二、单变量分析创建新变量airbnb['year_since_account_created']=airbnb['date_account_create
转载
2023-11-03 16:01:04
136阅读
作者 | 泳鱼一、聚类简介Clustering (聚类)是常见的unsupervised learning (无监督学习)方法,简单地说就是把相似的数据样本分到一组(簇),聚类的过程,我们并不清楚某一类是什么(通常无标签信息),需要实现的目标只是把相似的样本聚到一起,即只是利用样本数据本身的分布规律。聚类算法可以大致分为传统聚类算法以及深度聚类算法:传统聚类算法主要是根据原特征+基于划分/密度/层
转载
2024-04-22 20:10:30
34阅读
算法优缺点:优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据算法思想k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的
转载
2023-08-20 20:28:35
89阅读
首先说一下分类和聚类的区别:分类:分类其实就是从特定的数据中挖掘模式,做出相对应的判断。例如对班级的学生进性性别的分类,我事先已经知道只有男性和女性两个分类。聚类:聚类的目的也是将数据分类,但是在事前不知道按照何种标准去分类,完全是靠算法自己来判别各条数据的相似性,相似的就放在一起。聚类和分类最大的不同在于:分类的目标是事先已知的,而聚类则完全不一样,举类事先不知道分类标准是什么,完全靠算法自己去
转载
2024-04-06 11:17:40
64阅读
k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。k-means算法中的k代表类簇个数,means代表类簇内数据对象的均值(这种均值是一种对类簇中心的描述),因此,k-
转载
2023-08-23 20:58:07
272阅读
K-meansK-means算法简述K-means算法思考常用的几种距离计算方法KMean算法的算法优缺点与适用场景优点缺点代码2D数据3D数据 K-means算法简述K-means算法,也称为K-平均或者K-均值,一般作为掌握聚类算法的第一个算法。这里的K为常数,需事先设定,通俗地说该算法是将没有标注的 M 个样本通过迭代的方式聚集成K个簇。在对样本进行聚集的过程往往是以样本之间的距离作为指标
转载
2024-04-15 13:37:58
69阅读
无监督学习:【机器学习】使用scikitLearn对数据进行聚类:Kmeans聚类算法的应用及密度聚类DBSCAN【机器学习】使用scikitLearn对数据进行聚类:高斯聚类GaussianMixture【机器学习】使用scikitLearn对数据进行聚类:7种异常和新颖性检测方式聚类是典型的无监督学习的一种,它将相似的元素聚集在一起。 聚类的应用有很多,比如降维,将一群实例点集聚成K类,每个实
转载
2024-05-07 19:51:07
89阅读
Kmeans算法流程从数据中随机抽取k个点作为初始聚类的中心,由这个中心代表各个聚类 计算数据中所有的点到这k个点的距离,将点归到离其最近的聚类里 调整聚类中心,即将聚类的中心移动到聚类的几何中心(即平均值)处,也就是k-means中的mean的含义 重复第2步直到聚类的中心不再移动,此时算法收敛 最后kmeans算法时间、空间复杂度是: 时间复杂度:上限为O(tKmn),下限为Ω(Kmn)其中,
转载
2024-07-16 11:24:28
100阅读