###########三元运算##########格式:result =值1 if 条件 else 值2 #如果条件成立,那么将“值1”赋值给result变量,否则 ,将“值2”赋值给result变量###########基本数据类型补充############set:不重复的元素集合额1.add : 添加元素结果:2.clear :清除
转载
2023-11-21 00:08:49
160阅读
一、异常概述 异常是程序中的一些错误,但并不是所有的错误都是异常,并且错误有时候是可以避免的。比如说,你的代码少了一个分号,那么运行出来结果是提示是错误 java.lang.Error;如果你用System.out.println(11/0),那么你是因为你用0做了除数,会抛出 java.lang.ArithmeticException 的异常。 异常发生的原因有很多,通常包含以下几大类:
转载
2023-08-31 06:37:34
117阅读
.dcm文件是DICOM(Digital Imaging and Communications in Medicine)即医学数字成像和通信中记录医学图像和相关信息的文件,在用于医学图像处理的时候我们需要将·.dcm文件中的图像信息读取到python程序中来,下面展示了一个简单的示例。安装pydicom在python环境下安装pydicom只需要在命令行窗口中输入:pip install pydi
转载
2023-11-28 20:11:35
72阅读
概述Excel固然功能强大,也有许多函数实现数据处理功能,但是Excel仍需大量人工操作,虽然能嵌入VB脚本宏,但也容易染上宏病毒。python作为解释性语言,在数据处理方面拥有强大的函数库以及第三方库,excel作为主要基础数据源之一,在利用数据进行分析前往往需要预先对数据进行整理。因此,本文就python处理excel数据进行了学习,主要分为python对excel数据处理的常用数据类型以及常
转载
2023-08-09 10:53:15
327阅读
Python是数据科学家十分喜爱的编程语言,其内置了很多由C语言编写的库,操作起来更加方便,Python在网络爬虫的传统应用领域,在大数据的抓取方面具有先天优势,目前,最流行的爬虫框架Scrapy、HTTP工具包urlib2、HTML解析工具、XML解析器lxml等,都是能够独当一面的Python类库。Python十分适合数据抓取工作,对于大数据的处理,Python在大数据处理方面的优势有:1、异
转载
2023-06-28 15:50:52
429阅读
在处理医学图像时,DICOM(数字成像与通信医学)格式颇为常见。Python 提供了一些库,如 `pydicom`,用于读取和处理 DICOM 文件。然而,在使用这些工具时,有时候会遇到一些问题。以下是关于“python dicom处理”的博文记录。
## 问题背景
在我们医院的影像科,医生需要通过计算机读取和分析患者的医学图像。使用 DICOM 文件是该过程中的关键,也因此需要确保文件的准确读
一、基本函数篇1)python strip()函数介绍函数原型声明:s为字符串,rm为要删除的字符序列s.strip(rm) 删除s字符串中开头、结尾处,位于 rm删除序列的字符
s.lstrip(rm) 删除s字符串中开头处,位于 rm删除序列的字符
s.rstrip(rm) 删除s字符串中结尾处,位于 rm删除序列的字符注意: 当rm为空时,默认删除空白符(包括'\n', '\r',
转载
2023-08-14 14:04:31
219阅读
本文仅供交流学习,部分代码根据练习题需求未采用函数进行直接转换。有错误或更好的方法欢迎提出。1.三个数排序输入三个整数x,y,z,将这三个数由小到大排序输出。输入:1 4 3输出:1 3 4a,b,c=input().split()
n=[]
n.append(int(a))
n.append(int(b))
n.append(int(c))
n.sort()
print(n[0],n[1],n[
转载
2023-10-14 14:32:09
340阅读
题记:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。无论,数据分析,数据挖掘,还是算法工程师,工作中80%的时间都用来处理数据,给数据打标签了。而工作中拿到的数据脏的厉害,必须经过处理才能放入模型中。以下是一脏数据表:(表格放在最后供看官下载练习)这张表格有多少处数据问题?大家对数据问题是如何定义的?不妨带着疑问阅读下文;数据处理四性“完全合一”。完整性:单条数据是否存在空值,
转载
2023-07-07 13:45:39
205阅读
目前Python可以说是非常流行,在目前的编程语言中,Python的抽象程度是最高的,是最接近自然语言的,很容易上手。你可以用它来完成很多任务,比如数据科学、机器学习、Web开发、脚本编写、自动化等。▍1、for循环中的else条件这是一个for-else方法,循环遍历列表时使用else语句。下面举个例子,比如我们想检查一个列表中是否包含奇数。那么可以通过for循环,遍历查找。 numbers&
转载
2023-09-14 16:26:18
118阅读
pandas 是基于NumPY 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。习惯上,我们会按下面格式引入所需要的包:一、 &nbs
转载
2023-12-07 09:01:34
68阅读
通过实现SQL类似的功能,处理收集数据,数据预处理,数据计算汇总等流程,了解相应的数据处理流程和技术手段。
目的:从数据收集,数据预处理,数据简单的汇总统计,以及后续的数据说明做一个简单的示例
本分析不涉及具体姓名的数据,做相应的匿名化处理,所有数据来源都是网络公开数据。通过对公开数据的收集,数据预处理,汇总,描述性统计等方式
熟悉相应的技术应用,一些分
转载
2023-08-24 14:59:16
286阅读
Python 字符串切割处理,file()方法读取、写入文件
近期碰到一个问题,两套系统之间数据同步出了差错,事后才发现的,又不能将业务流程倒退,但是这么多数据手工处理量也太大了,于是决定用Python偷个小懒。1、首先分析数据。两边数据库字段的值都是一样,先将这边数据库的数据查询导出,正好是2列120多行的数据。那么目标就是拼接成update from
转载
2020-04-04 14:37:00
272阅读
6.数据处理实例6.1.数据如图: 6.2.需求: 6.3.处理数据: 我个人拿到数据,直接想着转换成DataFrame,然后着手算总分,然后直接数据分组,还是太年轻了...self.df["total"] = self.df.英语 + self.df.体育 + self.df.军训
转载
2023-09-12 15:19:41
65阅读
1、选择建模数据 我们的数据集有太多的变量,很难处理,我们需要将这些海量的数据减少到我们能理解的程度。 我们肯定要选择变量的一列来进行分析,故我们需要查看数据集中所有列的列表名,这是通过数据框架的Columns属性完成的。 以之前的墨尔本房价为例 import pandas as pd
# 将文件路径保存到变量以便于访问
melbourne_file_path =
转载
2023-06-26 13:24:05
215阅读
尝试学习Python,更主要还是为了解决工作中的困难。现在的工作,需要汇总和分析所有site的销量、费用和活动执行情况,由于工作量较为庞大,而实际上并不复杂,所以摸索尝试用python进行处理。当然,写到这里的时候,我还是个刚刚完成编程环境搭建的、刚开始接触列表的纯小白,由于工作并不涉及到编程,我决定跳跃发展,直接尝试通过在网上找到的代码来完成Excel数据处理工作,希望在这个过程中逐渐熟悉pyt
转载
2023-05-27 09:30:57
218阅读
文章目录1. pandas简介2. pandas 用法2.1 pandas的数据格式2.2 数据的导入和自生成数据pandas的行列数据的获取pandas 条件筛选数据pandas数据的数据处理pandas 缺失值,重复(异常值)等的处理缺失值的处理补充(数据相关性的计算)以及显著性检验 1. pandas简介pandas是一个是一个python包,可以很大程度上加快我们对数据的处理。花费时间把
转载
2024-01-11 21:43:37
98阅读
1、选择建模数据 我们的数据集有太多的变量,很难处理,我们需要将这些海量的数据减少到我们能理解的程度。 我们肯定要选择变量的一列来进行分析,故我们需要查看数据集中所有列的列表名,这是通过数据框架的Columns属性完成的。 以之前的墨尔本房价为例import pandas as pd
# 将文件路径保存到变量以便于访问
melbourne_file_path = '
转载
2023-05-28 21:07:45
301阅读
Pandas使用一个二维的数据结构DataFrame来表示表格式的数据,相比较于Numpy,Pandas可以存储混合的数据结构,同时使用NaN来表示缺失的数据,而不用像Numpy一样要手工处理缺失的数据,并且Pandas使用轴标签来表示行和列。1、文件读取首先将用到的pandas和numpy加载进来import pandas as pdimport numpy as np读取数据:#csv和xls
转载
2024-01-30 19:10:34
144阅读
首先了解使用python进行数据处理常用的两个包:numpy和pandas。numpy最重要的特点就是n维数组对象ndarray是一个快速而灵活的大数据集容器,它是一个通用的同构数据多维容器,即所有的元素必须是相同的类型,每个数组有一个shape(表示维度大小的元组),一个dtype(说明数组数据类型的对象)。1.创建数组常使用的函数有:array,arange 例如: array函数: aran
转载
2023-09-16 21:26:25
481阅读