最近的这几个月,AIGC场景的模型与应用开始大量涌现。其中LLM(Large Language Models,大语言模型),所展现出来的自然语言理解与自然语言生成能力,不止让普通人惊喜,同样让NLP研究者看到了无数可能性。相信过去几年在NLP场景做过应用探索的朋友,经常会因为NLG(自然语言生成)效果较差,不得不使用基于检索拼接的方式进行产出,效果相对呆板。而如今LLM带来的提升,已经可以很好解决
我们说了三个tokenize不同粒度:word/subword/char,现在最常用的是subword字词的模式,今天就和大家分享下字词的三个经典的算法:WordPiece、BPE/BBPE和unigram。
原创
精选
2024-07-11 21:47:28
934阅读
DALL·E是OpenAI公司发布的一个用文本生成图像的模型,它是GPT-3的一个版本,经过文本-图像数据集训练,具有120亿参数,可以从文本描述生成图像。DALL·E能够创建拟人化的动物和物体,以合理的方式组合不相关的概念,渲染文本,以及对现有图像进行转换。DALL·E生成的图像:一个穿着芭蕾舞裙遛狗的萝卜宝宝的插图。DALL·E生成的图像:一个穿着芭蕾舞裙滑冰的萝卜宝宝的插图。DALL·E有时
token是大模型处理和生成语言文本的基本单位,目前LLaMA,ChatGLM等大模型采用的是基于分词工具sentencepiece实现模型系列的开篇。
12月12日,由深度学习技术及应用国家工程实验室主办的WAVE SUMMIT+ 2021深度学习开发者峰会在上海召开。此次峰会,最让开发者惊艳的是飞桨开源框架v2.2的重磅发布。百度深度学习技术平台部高级总监马艳军与百度AI产品研发部总监忻舟,就飞桨新版本特性与落地部署应用做了详尽解读,框架核心技术持续领先,落地部署降低应用门槛,飞桨正在为解决AI落地产业提供全新的答案。践行融合创新,飞桨核心技术
源 | 新智元大家好,这里是 NewBeeNLP。万万没想到,现在大语言模型们也要像王者荣耀/LoL/Dota这些游戏里的玩家一样打排位赛了!据说,那些闭源模型们很快也会被拉出来溜溜。最近,来自LMSYS Org(UC伯克利主导)的研究人员又搞了个大新闻——大语言模型版排位赛!顾名思义,「LLM排位赛」就是让一群大语言模型随机进行battle,并根据它们的Elo得分进行排名。然
A Survey of Large Language Models前言6 UTILIZATION6.1 In-Context Learning6.1.1 提示公式6.1.2 演示设计6.1.3 底层机制6.2 Chain-of-Thought Prompting6.2.1 CoT的上下文学习6.2.2 关于CoT的进一步讨论6.3 Planning for Complex Task Solvin
目录1 摘要 2 基础prompt方法1.1 Zero-shot1.2 Few-shot3 Instruct Prompt4 一些高级的Prompt 用法4.1 Self-Consistent Sampling温度(Temperature)Top_K4.2 Chain of Thought4.3 Tree of Thought5 自动prompt 设计6
编者按:近年来,人工智能技术飞速发展,尤其是大型语言模型的问世,让 AI 写作、聊天等能力有了质的飞跃。如何更好地理解和利用这些生成式 AI,成为许多开发者和用户关心的问题。今天,我们推出的这篇文章有助于读者深入了解大语言模型的工作原理。作者指出,大语言模型的核心在于将文本转化为数字表征,这就需要介绍 tokenizer 的概念。通过 tokenizer ,文本被分词并映射为 token id,这
原创
2023-11-29 10:29:50
207阅读
文章作者:途索 阿里巴巴 算法专家导读:什么样的模型是好的模型?相信这是每一个数据分析师和大数据AI算法工程师都曾经默默思考过的问题。为了更全面地思考这个问题,我们不妨从以下三方面进行讨论。如何理解“模型”?如何理解“好”?有万能的模型么?01如何理解“模型”?“模型”的英文model,究其拉丁词源,是从modus这个词演化而来。而modus这个词在拉丁文中的含义基本可以用“测量”“标准
摘要在最近取得广泛关注的大规模语言模型(LLM)应用强化学习(RL)进行与人类行为的对齐,进而可以充分理解和回答人的指令,这一结果展现了强化学习在大规模NLP的丰富应用前景。本文介绍了LLM中应用到的RL技术及其发展路径,希望给读者们一些将RL更好地应用于大规模通用NLP系统的提示与启发。大规模语言模型向RL的发展语言模型(LM)是一种编码和理解自然语言的NLP模型。早期的Word2Vec等研究工
转载
2024-03-24 12:04:46
133阅读
一、如何评价语言模型的好坏 标准:比起语法不通的、不太可能出现的句子,是否为“真实”或"比较可能出现的”句子分配更高的概率 过程:先在训练数据集上训练模型的参数,然后在测试数据集上测试模型的效果。 要求:测试数据集与训练数据集完全不同 评价指标:用以评价模型的测试数据集上的效果二、N-gram 模型的外部评测1. 比较两个模型最好的评价方法:将两个模型A和B应用于同一个任务:拼写检查、语音
转载
2024-06-29 12:57:00
155阅读
文章目录@[toc]第一部分:调研、评测文心一言1.体验(1)基本功能介绍和使用(2)优缺点分析及改进建议(3)采访用户2.BUG3.结论讯飞星火1.体验(1)基本功能介绍和使用(2)优缺点分析及改进建议2.BUG3.结论第二:分析(一)开发时间估计(二)同类产品对比排名(三)软件工程方面的建议第三:建议和规划市场概况市场现状市场与产品生态产品规划第一部分:调研、评测文心一言1.体验(1)基本功能
前言 大型语言模型(LLM)是指能够处理大量自然语言数据的深度学习模型,它已经在自然语言处理、文本生成、机器翻译等多个领域中展现出了巨大的潜力。在过去几年中,LLM领域经历了飞速的发展,其中Google和OpenAI作为两家领先的公司在这个领域中的表现备受关注。Google是LLM领域的重要参与者,其BERT自编码模型和T5编码解码器在自然语言理解任务上取得了优异的表现。BERT模型通过
转载
2024-02-19 18:32:15
195阅读
最近,人工智能领域现象级产品ChatGPT在海内外引发热议,掀起一阵全球科技竞速赛。百度将在3月16日围绕其生成式AI产品、大语言模型“文心一言”召开新闻发布会,消息一出就引起了业界人士的广泛关注。这意味着百度有机会成为全球第一个做出类ChatGPT的大语言模型的科技大厂。有外媒评价称,中国的百度已将自己投入到全球商业化竞赛中,这场关于生成式AI这样的下一代人工智能技术将会给互联网带
转载
2024-01-01 21:14:28
162阅读
2月15日,OpenAI在官博介绍了一个大规模无监督NLP模型:GPT 2.0,被称为“史上最强通用NLP模型”。该模型可以生成连贯的文本段落,刷新了7大数据集基准,并且能在未经预训练的情况下,完成阅读理解、问答、机器翻译等多项不同的语言建模任务。一时间,GPT 2.0的消息在全网刷屏,有关这一模型是否被过誉的讨论也在热烈进行中。今天这篇文章,来自新浪微博AI Lab的算法专家张俊林将谈一谈自己对
转载
2024-08-04 11:47:34
1476阅读
文章目录Language Model(LM) 简介Chain Rulesparsity 稀疏性问题马尔可夫假设Language Model: Unigram, Bigram, N-gram举例:Unigram, Bigram 模型的训练过程和使用UnigramBigram语言模型的评估-----Perplexity平滑函数Add-one Smoothing (也就是 拉普拉斯平滑)Add-K S
转载
2024-03-25 08:13:27
757阅读
文本自然语言处理的一个最最最基本的一个问题:如何用数学符号或公式表示一段文本?如何计算一段文本在某种语言下出现的概率?语言模型(用概率论的专业术语表示):为长度为m的字符串确定其概率分布P(w1,w2,...wm),其中w1到wm依次表示文本中的各个词语。概率值计算公式如下, 但是有个问题发现没有?加入一个文本超级长,会怎么样?从第三项开始计算难度就会很大。此时,有人提出了n元模型(n-
转载
2024-04-03 20:51:43
461阅读
文章目录一、简介二、注意力机制2.1 NLP中的注意力2.2 自注意力2.2.1 点积(Dot-Product)2.2.2 具体计算过程:2.3 多头注意力三、位置编码(Positional Encoding)四、残差和前馈(Feed Forward)4.1 为什么残差[3]4.2 前馈五、训练-模型的参数在哪里六、参考文献 一、简介基于假设:一个词在句子中的意思,与上下文(语境)有关。与哪些词
转载
2024-07-29 16:04:08
115阅读
随着人工智能技术的不断发展,大型语言模型(Large Language Models, LLMs)近年来受到了广泛关注。作为一种基于深度学习的自然语言处理(NLP)技术,大语言模型能够通过训练海量文本数据,捕捉语言的复杂模式和语义关联,从而实现对自然语言的理解和生成。传统的NLP系统通常采用基于规则或统计方法,需要手工设计特征和构建复杂的流程。而大语言模型则是
原创
2024-07-23 11:36:09
423阅读