前言前几篇都围绕着语言模型的decoding strategy来讲述,今天将进入进阶篇,在解码策略效果有限和提示词修改也无法满意的情况下如何提升模型的效果呢?这时我们需要对大语言模型进行fine-tune,即微调。一般我们用的大语言模型都是别人在通用的大数据集上训练过后的,或者已经在特殊领域微调过的,所以可能不适合我们当前所需要模型生成的内容。 本篇将以bloom-1b1模型为例,使用xturin
目录1 摘要 2 基础prompt方法1.1 Zero-shot1.2 Few-shot3 Instruct Prompt4 一些高级的Prompt 用法4.1 Self-Consistent Sampling温度(Temperature)Top_K4.2 Chain of Thought4.3 Tree of Thought5 自动prompt 设计6
现阶段chatGPT非常火热。带动了第三方开源库:LangChain火热。它是一个在大语言模型基础上实现联网搜索并给出回答、总结 PDF 文档、基于某个 Youtube 视频进行问答等等的功能的应用程序。什么是LangchainLangChain 是一个用于开发由语言模型驱动的应用程序的框架。 langchain的目标:最强大和差异化的应用程序不仅会通过 API 调用语言模型,它主要拥有 2 个能
转载
2024-04-23 12:52:44
222阅读
微调大语言模型-ChatGLM-Tuning大语言模型-微调chatglm6b大语言模型-中文chatGLM-LLAMA微调大语言模型-alpaca-lora本地知识库大语言模型2-document ai解读大语言模型-DocumentSearch解读大语言模型-中文Langchain大语言模型的学习,首先来看简单有效的document.aidocument.aihttps://github.co
转载
2024-05-27 17:07:54
115阅读
计算机的发展,促使了一个新的职业的出现,程序员是近些年出现的并且得到了广泛关注的一个职业,相信这也是很多莘莘学子的职业梦想。但程序员也有很多种,并不是每一个程序员能够精通所有的编程语言。所谓术业有专攻,如果将来志在编程世界的网友就要注意了,今天西安卓新思创移动互联网教育产业联盟的雷老师给大家推荐一下2014年最流行的编程语言,他们可以说是未来程序员们生存的工具。
1.Java
首先我要推荐的就是J
转载
2024-04-14 10:00:52
517阅读
源 | 新智元大家好,这里是 NewBeeNLP。万万没想到,现在大语言模型们也要像王者荣耀/LoL/Dota这些游戏里的玩家一样打排位赛了!据说,那些闭源模型们很快也会被拉出来溜溜。最近,来自LMSYS Org(UC伯克利主导)的研究人员又搞了个大新闻——大语言模型版排位赛!顾名思义,「LLM排位赛」就是让一群大语言模型随机进行battle,并根据它们的Elo得分进行排名。然
1. 引言在介绍论文之前,我将先简单介绍一些相关背景知识。首先是语言模型(Language Model),语言模型简单来说就是一串词序列的概率分布。具体来说,语言模型的作用是为一个长度为m的文本确定一个概率分布P,表示这段文本存在的可能性。在实践中,如果文本的长度较长,P(wi | w1, w2, . . . , wi−1)的估算会非常困难。因此,研究者们提出使用一个简化模型:
转载
2024-03-13 11:24:26
114阅读
A Survey of Large Language Models前言6 UTILIZATION6.1 In-Context Learning6.1.1 提示公式6.1.2 演示设计6.1.3 底层机制6.2 Chain-of-Thought Prompting6.2.1 CoT的上下文学习6.2.2 关于CoT的进一步讨论6.3 Planning for Complex Task Solvin
本文是关于ChatGPT 背后核心技术实现的一个通俗白话版,不涉及到的AI具体实现的技术细节哦。在编排上增加了一些分割,内容具体如下:LLMs(大型语言模型)如果将ChatGPT比作是动物,它就像一只饥饿的毛毛虫一样,毛毛虫喜欢啃食树叶,并不断的长大。LLMs(大型语言模型)也喜欢吞噬大量的文本数据,并利用这些数据来学习,然后变得更加的聪明,更加的强大。LLMs消耗的文本数据越多,它们对语言和词语
对为 ChatGPT 提供支持的机器学习模型的温和介绍将从引入大型语言模型开始,深入探讨使 GPT-3 能够被训练的革命性自我注意机制,然后深入到从人类反馈中强化学习,这是使 ChatGPT 与众不同的新技术。大型语言模型ChatGPT 是一类机器学习自然语言处理模型的外推,称为大语言模型 (LLM)。LLM消化大量的文本数据并推断文本中单词之间的关系。这些模型在过去几年中不断发展,因为我们看到了
转载
2024-07-16 15:08:17
224阅读
语言模型在信息检索中的应用 背景聂建云博士是加拿大蒙特利尔大学(University of Montreal, Canada)的教授,主要研究方向是信息检索,自然语言处理等。6日上午,聂博士接受邀请,为计算机学院做了一次报告,主题为Integrating Term Relationships into Language Models for Information Retrieval目前
转载
2024-04-01 11:08:47
83阅读
1. Abstract自然语言处理任务,如问答、机器翻译、阅读理解和摘要,通常在任务特定的数据集上,通过监督学习来完成。我们证明,语言模型在没有任何显式监督的情况下,可以在一个包含数百万网页的数据集WebText上来学习这些任务。针对阅读理解任务,GPT-2在没有使用CoQA数据集微调的情况下,其性能仍然匹配或超过4个基线模型中的3个。语言模型的容量对于zero-shot任务
转载
2024-06-24 00:41:22
59阅读
引言词向量模型应该是任何一个NLP工程师都应该掌握的基础。还记得17年刚在实验室实习开始接触时,大家都一直在用word2vec。到了18年在公司实习时,实验大多基于glove模型。到了现在Bert大热,各种基于Bert的词向量模型层出不穷,在各个任务各显神威。最近由系统的学习了下词向量模型,发现其实每个词向量背后都蕴藏着很直观的思想或者很优美的数学推理,我相信对我们现在一些任务都会有启发。在这里记
转载
2024-05-13 15:39:14
385阅读
接上篇,将安全运营的定义为“使用算法能力提取关键信息”,以此来规避算法误判漏判带来的责任问题,同时提升运营人员的工作效率。在这篇尝试对语言模型的使用方法做一下讨论和分享。1. 语言模型先聊一下语言模型。(这里刻意规避了“大模型”这个词,主要是对其应用方式的理解还不深刻)直到ChatGPT出来之前,我都没有太关注过NLP领域相关的算法应用,主要是认为和我们更常涉及的应用领域,如分类、推荐等,有比较大
转载
2024-05-13 16:07:48
59阅读
计算语言学中有五个任务:linguistic problem, linguisticformalization, Computational formalism, Programming, Evaluation of how goodcomputers do 。计算语言学是从语言学的角度出发,是语言学的一个分支,该学科的目的就是提出一种可被计算机处理的语言理论,框架,模型。
转载
2024-05-29 23:07:20
48阅读
文章作者:途索 阿里巴巴 算法专家导读:什么样的模型是好的模型?相信这是每一个数据分析师和大数据AI算法工程师都曾经默默思考过的问题。为了更全面地思考这个问题,我们不妨从以下三方面进行讨论。如何理解“模型”?如何理解“好”?有万能的模型么?01如何理解“模型”?“模型”的英文model,究其拉丁词源,是从modus这个词演化而来。而modus这个词在拉丁文中的含义基本可以用“测量”“标准
在这个信息爆炸的时代,我们每天都在与海量的文字打交道。从社交媒体的短评,到学术论文的长篇大论;从日常聊天,到专业报告,文字无处不在。而就在这文字的海洋中,悄然诞生了一种能够“理解”甚至“创作”文字的智能体——大语言模型(Large Language Model,简称LLM)。它不是人,却能在某种程度上与人对话;它没有大脑,却能进行一定程度的“思考”。今天,就让我们一起走进大语言模型的世界,看看这个
一、如何评价语言模型的好坏 标准:比起语法不通的、不太可能出现的句子,是否为“真实”或"比较可能出现的”句子分配更高的概率 过程:先在训练数据集上训练模型的参数,然后在测试数据集上测试模型的效果。 要求:测试数据集与训练数据集完全不同 评价指标:用以评价模型的测试数据集上的效果二、N-gram 模型的外部评测1. 比较两个模型最好的评价方法:将两个模型A和B应用于同一个任务:拼写检查、语音
转载
2024-06-29 12:57:00
155阅读
摘要在最近取得广泛关注的大规模语言模型(LLM)应用强化学习(RL)进行与人类行为的对齐,进而可以充分理解和回答人的指令,这一结果展现了强化学习在大规模NLP的丰富应用前景。本文介绍了LLM中应用到的RL技术及其发展路径,希望给读者们一些将RL更好地应用于大规模通用NLP系统的提示与启发。大规模语言模型向RL的发展语言模型(LM)是一种编码和理解自然语言的NLP模型。早期的Word2Vec等研究工
转载
2024-03-24 12:04:46
133阅读
文章目录Language Model(LM) 简介Chain Rulesparsity 稀疏性问题马尔可夫假设Language Model: Unigram, Bigram, N-gram举例:Unigram, Bigram 模型的训练过程和使用UnigramBigram语言模型的评估-----Perplexity平滑函数Add-one Smoothing (也就是 拉普拉斯平滑)Add-K S
转载
2024-03-25 08:13:27
757阅读