作者:Nature“从数据处理基础扎实练习是数据分析与数据挖掘的第一步” 做一道好菜需要食材,好的食材需要经过优质的萃取提炼。食材的提炼过程包括选型、运输保鲜、加工清洗、按要求切菜等才能按菜谱进行真正的做出一道口感美味的菜。大数据时代数据分析与数据挖掘关键的一步在处理食材,这里的各类数据就是我们的食材,选择优质的数据,经过深加工清洗,去伪纯真这个过程需要耗费很长时间,也需要更多的实践经验。根据
转载
2023-08-11 12:45:52
95阅读
一、 数据挖掘语言概述 设计全面的数据挖掘语言是一个巨大的挑战,因为数据挖掘覆盖了宽广的任务,从数据特征化到挖掘关联规则,数据分类,聚集和偏差检测,等等。每个任务都有不同的需求。设计一个有效的数据挖掘语言需要对各种不同的数据挖掘任务的能力、限制、以及运行机制都有深入地理解。  
转载
2023-08-11 19:32:42
80阅读
第一节介绍数据挖掘是一个隐式提取以前未知的潜在有用的数据信息提取方式。它使用广泛,并且是众多应用的技术基础。本文介绍那些使用Python数据挖掘实践用于发现和描述结构模式数据的工具。近些年来,Python在开发以数据为中心的应用中被用的越来越多。感谢大型科学计算社区的支持以及大大丰富的数据分析函数库。尤其是,我们可以看到如何:• 导入和可视化数据• 数据分
转载
2024-01-30 19:35:41
28阅读
1.给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 方案1:可以估计每个文件安的大小为50G×64=320G,远远大于内存限制的4G。所以不可能将其完全加载到内存中处理。考虑采取分而治之的方法。 s 遍历文件a,对每个url求取,然后根据所
转载
2023-12-29 16:28:09
51阅读
简介: Python包含四种内置数据结构:列表(List)、元组(Tuple)、字典(Dictionary)和集合(Set),统称为容器。列表与元组均为序列结构,前者使用方括号表示且可修改,后者用圆括号表示且不可修改。列表支持多种方法和列表解析功能,以简化元素操作。例如,通过列表解析可以简洁地实现`d=[i+1 for i in c]`,输出结果为`[2,3,4]`。
原创
2024-10-05 09:45:13
68阅读
一:数据挖掘的基本知识 数据挖掘(Data Mining,简称DM)简单的讲就是从大量数据中挖掘或抽取出知识,数据挖掘,又称为数据库中知识的发现(Knowledge Discovery from DataBase,简称KDD),它是一个从大量数据中抽取挖掘未知的,有价值的模式或规律等知识的复杂过程。 KDD就是利用机器学习的方法从数据库中提取有价值知识的过程,他是数据库技术和机器学习两个学科的
转载
2024-07-16 10:16:30
63阅读
Mapreduce是一个分布式计算模型,用来解决海量数据的计算问题。首先打个比方,我们要做菜,你切牛肉,我切土豆,这就是“Map”。我们人越多,切得就越快。然后我们把切好的牛肉和土豆放到一起,这就是“Reduce”。(1) Map阶段将一个大任务分解成小任务,并分发给每个节点,每个节点并行处理这些任务,处理速度很快。实现:读取文件内容的时候对每一行解析成key-value的形
转载
2024-06-24 10:49:42
21阅读
前言用python实现了一个没有库依赖的“纯” py-based PrefixSpan算法。首先对韩老提出的这个数据挖掘算法不清楚的可以看下这个,讲解非常细致。我的实现也是基本照着这个思路。PrefixSpan算法原理总结再简单提一下这个算法做了一件什么事。假设有多个时间序列串:串序号序列
转载
2024-01-14 22:36:09
6阅读
简介: 字典在数学上是一个映射,类似列表但使用自定义键而非数字索引,键在整个字典中必须唯一。可以通过直接赋值、`dict`函数或`dict.fromkeys`创建字典,并通过键访问元素。集合是一种不重复且无序的数据结构,可通过花括号或`set`函数创建,支持并集、交集、差集和对称差集等运算。
原创
2024-10-14 20:37:00
73阅读
简介: 判断与循环是编程的基础,Python中的`if`、`elif`、`else`结构通过条件句来执行不同的代码块,不使用花括号,依赖缩进区分代码层次。错误缩进会导致程序出错。Python支持`for`和`while`循环,`for`循环结合`range`生成序列,简洁直观。正确缩进不仅是Python的要求,也是一种良好的编程习惯。
原创
2024-10-20 09:11:28
112阅读
简介: Python包含四种内置数据结构:列表(List)、元组(Tuple)、字典(Dictionary)和集合(Set),统称为容器。列表与元组均为序列结构,前者使用方括号表示且可修改,后者用圆括号表示且不可修改。列表支持多种方法和列表解析功能,以简化元素操作。例如,通过列表解析可以简洁地实现`d=[i+1 for i in c]`,输出结果为`[2,3,4]`。
原创
2024-10-14 20:35:02
35阅读
简介: 字典在数学上是一个映射,类似列表但使用自定义键而非数字索引,键在整个字典中必须唯一。可以通过直接赋值、`dict`函数或`dict.fromkeys`创建字典,并通过键访问元素。集合是一种不重复且无序的数据结构,可通过花括号或`set`函数创建,支持并集、交集、差集和对称差集等运算。
原创
2024-10-17 16:10:55
84阅读
1. 工程能力( 1 )编程基础:需要掌握一大一小两门语言,大的指 C++ 或者 Java ,小的指Python 或者 shell 脚本;需要掌握基本的数据库语言;建议:MySQL + python + C++ ;语言只是一种工具,看看语法就好;推荐书籍:《C++ primer plus 》( 2 )开发平台: Linux ;建议:掌握常见的命令,掌握 Linux 下的源码编译原理;推荐书籍:《L
转载
2023-07-14 16:55:56
109阅读
标签PostgreSQL , Orange3 , 可视化 , 时空数据 背景可视化分析会是一个让枯燥的数据说话的快捷途径,降低可视化分析门槛,同时又保留它的编程能力,是非常重要的。如今数据种类越来越多,除了常见的数值、文本,还有数组、K-V、图像、空间数据、波、基因 等等。对可视化分析软件的要求也越来越高。之前陆续写过几篇介绍数据挖掘/可视化项目Caravel的文章:caravel系列之安装与入门
数据挖掘数据挖掘是指对大量的数据进行分析与挖掘,得到一些未知的,有价值的信息等,比如从网站的用户或用户行为数据挖掘出用户的潜在需求信息。 数据挖掘技术可以帮助我们更好的发现事物之间的规律。 业务场景:发现窃电用户、发掘用户潜在需求、个性化推荐、疾病与症状/疾病与药物之间的规律数据挖掘过程1、定义目标 2、获取数据(爬虫、下载一些统计网站发布的数据、自有数据) 3、数据探索:对数据进行初步的研究和探
转载
2023-09-28 13:42:37
355阅读
一、 数据挖掘特点、二、 数据挖掘组件化思想、三、 朴素贝叶斯 与 贝叶斯信念网络、四、 决策树构造方法、五、 K-Means 算法优缺点、六、 DBSCAN 算法优缺点、七、 支持度 置信度、八、 频繁项集、九、 非频繁项集、十、 Apriori 算法过程
原创
2022-03-08 14:33:39
995阅读
目录数据挖掘一、数据挖掘理解二、数据准备1、缺失值处理2、异常值处理3、数据偏差的处理4、数据的标准化5、特征选择三、数据建模1、分类问题2、聚类问题3、回归问题4、关联问题四、评估模型1、混淆矩阵与准确率指标2、评估数据的处理 业务理解、数据理解、数据准备、构建模型、评估模型、模型部署。一、数据挖掘理解业务理解和数据理解思考问题数据挖掘只能在有限的资源与条件下去提供最大化的解决方案把握
转载
2023-08-13 21:36:41
432阅读
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘对象根据信息存储格式,用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internet等。数据挖掘流程定义问题:清晰地定义出业务问题,确定数据挖掘的目的。数
转载
2023-08-24 20:46:43
306阅读
数据挖掘 今天,我带领大家来了解一下数据挖掘。 首先,我们先来了解一下数据挖掘的定义。 数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。 我们再来看一下数据挖掘的详细解释。 所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数
转载
2023-11-22 16:10:24
506阅读
教材:数据挖掘基于R语言的实战。1数据挖掘数据挖掘的定义数据挖掘是对大量数据进行探索和分析,以便发现有意义的模式和规则的过程。“有意义”针对的是具体需要用数据分析来回答和解决的问题。数据挖掘活动无监督数据挖掘:对各个变量不区别对待,而是考查他们之间的关系。描述和可视化 关联规则分析 主成分分析、聚类分析等有监督数据挖掘:建立根据一些变量来预测另一些变量的模型,前者被称为自变量,后者被称为因变量。线
转载
2023-08-14 16:52:38
589阅读