1.编程实现WordCount实例。实验内容现有某电商网站用户对商品的收藏数据,记录了用户收藏的商品id以及收藏日期,名为buyer_favorite1。 buyer_favorite1包含:买家id,商品id,收藏日期这三个字段,数据以“\t”分割,样本数据及格式如下:买家id 商品id 收藏日期 10181 1000481 2010-04-04 16:54:31 20001
转载 2024-06-06 10:27:48
110阅读
什么是Map/Reduce?MapReduce是hadoop的核心组件之一,主要负责分布式计算Map/Reduce内部原理:MapReduce最重要的一个思想:分而治之,就是将负责的大任务分解成若干个小任务, 并行执行, 完成后在合并到一起,适用于大量复杂的任务处理场景,大规模数据处理场景.Map负责“分”,即把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行
 大数据处理模型MapReduce (接《大数据处理——Hadoop解析(一)》)大数据时代生产的数据最终是需要进行计算的,存储的目的也就是为了做大数据分析。通过计算、分析、挖掘数据背后的东西,才是大数据的意义所在。Hadoop不仅提供了数据存储的分布式文件系统,更重要的是提供了分布式编程模型和分布式计算系统,通过该编程模型和分布式计算架构可以解决大数据时代所面临的数据处理问题
原创 2014-05-27 23:20:24
2735阅读
1. join算法题如下:                                                    &nbsp
分析上图:输入分片(input split):在进行map计算之前,mapreduce会根据输入文件计算输入分片(input split),每个输入分片(input split)针对一个map任务,输入分片(input split)存储的并非数据本身,而是一个分片长度和一个记录数据的位置的数组,输入分片(input split)往往和hdfs的block(块)关系很密切,假如我们设定hdfs的块
主要内容:mapreduce整体工作机制介绍;wordcont的编写(map逻辑 和 reduce逻辑)与提交集群运行;调度平台yarn的快速理解以及yarn集群的安装与启动。1、mapreduce整体工作机制介绍回顾第HDFS第一天单词统计实例(HDFS版wordcount):统计HDFS的/wordcount/input/a.txt文件中的每个单词出现的次数——wordcount但是
转载 9月前
11阅读
1、大数据(big data) 什么是大数据?wikipedia上面给出了这样的定义: In information technology, big data is a collection of data sets so large and complex that it becomes difficult to process using on-hand database manageme
转载 精选 2013-03-12 10:55:45
811阅读
文章目录声明数据样例功能需求1.将数据文件按天归档,即每天一个数据文件。需求分析代码实现输出结果2. 将省份文件重新输出,输出后文件以一行一个省份进行保存需求分析代码实现输出结果3.统计每个省份的农产品市场总数需求分析代码实现输出结果4.统计没有农产品市场的省份有哪些需求分析代码实现输出结果5.统计山东省售卖蛤蜊的农产品市场占全省农产品市场的比例需求分析代码实现输出结果6.统计每个省农产品种类总
转载 2024-01-10 11:13:15
49阅读
描述了大数据的特性、大数据分析的功用、大数据分析的框架、MapReduce基础理论等。
原创 2013-01-01 23:16:27
6288阅读
3点赞
1评论
一.Map的原理和运行流程 Map的输入数据源是多种多样的,我们使用hdfs作为数据源。文件在hdfs上是以block(块,Hdfs上的存储单元)为单位进行存储的。  1.分片 我们将这一个个block划分成数据分片,即Split(分片,逻辑划分,不包含具体数据,只包含这些数据的位置信息),那么上图中的第一个Split则对应两个个文件块,第二个Split对应
我们已经进入了大数据处理时代,需要快速、简单的处理海量数据,海量数据处理的三个主要因素:大容量数据、多格式数据和速度, DMCTextFilter和HTMLFilter是由北京红樱枫软件有限公司研制和开发的纯文本抽出和HTML转换通用程序库产品。本产品可以从各种各样的文档格式的数据中或从插入的OLE对象中,快速抽出纯文本数据信息和转换成HTML文件。便于用户实现对多种文档数据资源信息进行统一管理,编辑,检索和浏览。
原创 2014-06-10 10:39:06
937阅读
我们已经进入了大数据处理时代,需要快速、简单的处理海量数据,海量数据处理的三个主要因素:大容量数据、多格式数据和速度, DMCTextFilter和HTMLFilter是由北京红樱枫软件有限公司​研制和开发的纯文本抽出和HTML转换通用程序库产品。本产品可以从各种各样的文档格式的数据中或从插入的OLE对象中,快速抽出纯文本数据信息和转换成HTML文件。便于用户实现对多种文档数据资源信息进行统一管理,编辑,检索和浏览。
原创 2014-06-13 18:30:03
863阅读
我们已经进入了大数据处理时代,需要快速、简单的处理海量数据,海量数据处理的三个主要因素:大容量数据、多格式数据和速度, DMCTextFilter和HTMLFilter是由北京红樱枫软件有限公司研制和开发的纯文本抽出和HTML转换通用程序库产品。本产品可以从各种各样的文档格式的数据中或从插入的OLE对象中,快速抽出纯文本数据信息和转换成HTML文件。便于用户实现对多种文档数据资源信息进行统一管理,编辑,检索和浏览。
原创 2014-06-25 17:17:56
915阅读
mapreduce处理流程1. 读取指定目录下待处理文件,假设数据大小为200M;2. 在客户端submit()之前,获取待处理数据的信息,然后根据设置的**配置参数**,形成一个任务规划,就是**切片信息**,根据待处理数据文件大小根据参数配置划分为不同的文件,默认是128M进行切分,待处理数据文件就会被切分成两个文件;3. 切片完成之后,就会向Yarn提交切片信息(Job.split .jar
转载 2024-03-18 23:32:54
62阅读
 目录零、本节学习目标一、Spark的概述(一)Spark的组件1、Spark Core2、Spark SQL3、Spark Streaming4、MLlib5、Graph X6、独立调度器、Yarn、Mesos(二)Spark的发展史1、发展简史2、目前最新版本二、Spark的特点(一)速度快(二)易用性(三)通用性(四)兼容性(五)代码简洁1、采用MR实现词频统计2、采用Spark实
转载 2023-08-08 10:02:29
230阅读
作者: Divakar等摘要:大数据解决方案的逻辑层可以帮助定义和分类各个必要的组件,大数据解决方案需要使用这些组件来满足给定业务案例的功能性和非功能性需求。这些逻辑层列出了大数据解决方案的关键组件,包括从各种数据源获取数据的位置,以及向需要洞察的流程、设备和人员提供业务洞察所需的分析。  概述  这个 “大数据架构和模式” 系列的 第 2 部分 介绍了一种评估大数据解决方案可行性的基于维度的方
转载 2023-07-08 15:59:04
171阅读
     最近在整理整理java大数据处理这一系列的文章,在网上发现一个java写excel文件的方式,非常的有技巧,并且性能非常高,我在自己机器上简单的操作了一下,感觉非常的棒  这里就把这个方法和大家分享一下,一起讨论一下这种方式的成熟度.   简单说明  
终极Hadoop大数据教程包含 MapReduce、HDFS、Spark、Flink、Hive、HBase、MongoDB、Cassandra、Kafka 等的数据工程和 Hadoop 教程!课程英文名:The Ultimate Hands-On Hadoop - Tame your Big Data!此视频教程共17.0小时,中英双语字幕,画质清晰无水印,源码附件全下载地址课程编号:307 百度
转载 2023-11-17 20:37:23
232阅读
第一章 Spark 性能调优1.1 常规性能调优1.1.1 常规性能调优一:最优资源配置Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示
文章目录2.1 概述2.2 Hadoop项目结构2.3 Hadoop的安装与使用2.4 Hadoop集群 2.1 概述• Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构 • Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中 • Hadoop的核心是分布式文件系统HDFS(Hadoop Di
  • 1
  • 2
  • 3
  • 4
  • 5