单片机ADC采样算法 之 卡尔曼滤波 算法的核心思想是,根据当前的仪器"测量值" 和上一刻的 “预测量” 和 “误差”,计算得到当前的最优量. 再预测下一刻的量, 里面比较突出的是观点是. 把误差纳入计算, 而且分为预测误差和测量误差两种.通称为 噪声. 还有一个非常大的特点是,误差独立存在, 始终不受测量数据的影响。下来先了解一个卡尔曼滤波中几个参数的含义:概率(Probability)
一、限幅滤波1、方法根据经验判断两次采样允许的最大偏差值A每次采新值时判断:若本次值与上次值之差<=A,则本次有效;若本次值与上次值之差>A,本次无效,用上次值代替本次。2、优缺点克服脉冲干扰,无法抑制周期性干扰,平滑度差。3、程序/* A值根据实际调,Value有效值,new_Value当前采样值,程序返回有效的实际值 */
#define A 10
char Value;
char
转载
2024-04-08 13:32:23
211阅读
高斯滤波是图像四大滤波之一,四大滤波包括均值滤波,中值滤波,高斯滤波,双边滤波。均值滤波的原理简单直接,就是遍历图像像素点,以当前像素点为中心,将卷积模板内的所有像素点取平均值并设置到当前像素点,虽然也起到了平滑作用,但由于引入了噪声成分,去噪效果不理想,但速度快。高斯滤波的原理是假设像素灰度值成正态分布,以当前像素为中心,离当前像素越远,则占的权重越低。高斯滤波其实也引入了噪声成分。均值滤波和高
转载
2024-05-14 20:57:52
124阅读
数字图像在其形成、传输记录的过程中往往会受到很多噪声的的污染,比如:椒盐噪声、高斯噪声等,为了抑制和消除这些随即产生的噪声而改善图像的质量,就需要去、对图像进行去噪处理,去噪也就是滤波处理。中值滤波和同态滤波都是图像增强的方法,但是这两种方法是从不同的方式进行改善一副图片的质量。中值滤波是图像平滑的一种方法 它是一种非线性平滑滤波技术,在一定条件下可以克服线性滤波带来的图像细节的模糊问题
转载
2024-03-08 18:11:06
253阅读
中值滤波中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值.中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下
转载
2024-05-20 16:18:03
137阅读
一、回顾一下传统的中值滤波 中值滤波就是选择一定形式的窗口,使其在图像的各点上移动,用窗内像素灰度值的中值代替窗中心点处的像素灰度值。它对于消除孤立点和线段的干扰十分有用,能减弱或消除傅里叶空间的高频分量,但也影响低频分量。高频分量往往是图像中区域边缘灰度值急剧变化的部分,该滤波可将这些分量消除,从而使图像得到平滑的效果。对于一些细节较多的复杂图像,还可以多次使用不同的中
转载
2023-11-28 10:48:40
96阅读
目录一、引言二、均值滤波 三、方框滤波四、总结一、引言均值滤波(Mean Filter)和方框滤波(Box Filter)都是图像处理中常用的平滑滤波方法,它们的主要目的是减少图像中的噪声并平滑图像。二、均值滤波均值滤波是一种线性滤波方法,它的原理是将一个滤波器(通常是一个小的矩形窗口)在图像上滑动,计算窗口内像素的平均值,然后用这个平均值来替代窗口中心像素的值。这个操作可以用于去除噪声
一、平滑空间滤波器平滑线性滤波器常用于模糊处理和降低噪声,就是对模板内像素简单求平均值,即待求像素点的值是:一般是赋予于距离成反比的权重,所有权重都相等的叫盒状滤波器。 空间均值处理的一个重要应用是为了对感兴趣的物体得到一个粗略的描述而模糊一幅图像,这样,那些较小的物体的灰度就与背景混合在一起了,较大物体变得像斑点而易于检测,如下图所示:
转载
2024-03-26 21:49:21
156阅读
项目场景:一般传感器会有极端噪点出现,比如热传感器,LCD光感器等。 这些噪点应该选用什么降噪最合适呢?基本原理:图像的中值滤波是一种非线性图像处理方法,是统计排序滤波器的一种典型应用。与之前介绍的均值处理的思想有所不同,中值滤波是通过对邻域内像素按灰度排序的结果决定中心像素的灰度。具体的操作过程如下:用一个奇数点的移动窗口,将窗口中心点的值用窗口内各点的中值代替。假设窗口内有5个点,其值为1,2
转载
2024-04-04 20:33:13
112阅读
快速中值滤波算法 中值滤波算法: 在图像处理中,在进行如边缘检测这样的进一步处理之前,通常需要首先进行一定程度的降噪。中值滤波是一种非线性数字滤波器技术,经常用于去除图像或者其它信号中的噪声。这个设计思想就是检查输入信号中的采样并判断它是否代表了信号,使用奇数个采样组成的观察窗实现这项功能。观察窗口中的数值进行排序,位于观察窗中间的中值作为输出。然后,丢弃最早的值,取得新的采样,重复上
转载
2023-08-30 20:04:59
735阅读
中值滤波是一种典型的非线性滤波技术。它在一定条件下可以克服线性滤波器如最小均方滤波,均值滤波等带来的图像细节模糊,而且对滤波脉冲干扰及图像扫描噪声非常有效。传统的中值滤波一般采用含有奇数个点的滑动窗口,用窗口中各点灰度值的中值来替代指定点的灰度值。对于奇数个元素,中值为大小排序后中间的数值;对于偶数个元素,中值为排序后中间两个元素灰度值的平均值。中值滤波是一种典型的低通滤波器,主要用来
转载
2023-08-28 20:37:04
146阅读
对于数字图像的去噪,前边我们讲了均值滤波算法与高斯滤波算法,此外很常见的还有中值滤波算法,这些滤波算法都属于空间滤波,即对于每一个像素点,都选取其周围矩形区域中的像素点来计算滤波值。最近在项目中要使用到中值滤波,发现如果调用Opencv的medianBlur函数来实现中值滤波,窗口为3*3或者5*5时耗时为几毫秒,当窗口达到7*7或者9*9以上,耗时将增加至几十毫秒,这很影响实时性,所以自己基于C
转载
2024-07-17 15:49:52
0阅读
一、原理_中值滤波中值滤波的基本思想是将图像中每个像素的灰度值用其邻域内像素灰度的中值代替,它是一种非线性平滑滤波算法。 设加噪图像为 f(x,y) ,经中值滤波处理后的图像为g(x,y) ,则:式中,S是(x,y)像素点的邻域。本实验分别选用3×3、5×5、7×7的中值滤波窗口对图像进行处理。需要注意的是,当模板滑动到图像边缘时,模板的部分行或列就会处于图像之外,本实验可采用下面的任一种方法处理
转载
2024-03-21 16:05:37
244阅读
高密度椒盐噪声的多方向加权均值滤波算法-附代码 文章目录高密度椒盐噪声的多方向加权均值滤波算法-附代码1.算法原理1.1 基于直方图的噪声检测1.2 邻域非噪声像素的多方向搜索1.3 非噪声像素灰度值的加权平均2.算法流程3.算法结果4.参考文献:5.MATLAB代码 摘要:本文介绍一种高密度椒盐噪声的多方向加权均值滤波算法,该算法对于高密度椒盐噪声具有较好的滤除效果。 1.算法原理1.1 基于
转载
2024-08-12 13:54:01
76阅读
1、算法介绍 中位值滤波算法的实现方法是采集N个周期的数据,去掉N个周期数据中的最大值和最小值,取剩下的数据的平均值。中位值滤波算法特别适用于会偶然出现异常值的系统。中位值滤波算法应用比较广泛,比如用于一些比赛的评分,经常是去掉一个最高分去掉一个最低分,将其他评分取平均值作为选手的最终得分。优点:相比于平均值滤波算法,中位值滤波算法能够有效滤除
转载
2024-02-04 08:33:19
308阅读
1、什么是中值滤波? 中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心象素的原来灰度值,它是一种非线性的图像平滑法,它对脉冲干扰级椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。中值滤波可以过滤尖峰脉冲。目的在于我们对于滤波后的数据更感兴趣。滤波后的数据保留的原图像的变化趋势,同时去除了尖峰脉冲对分析造成的影响。 以一维信号
转载
2024-03-08 18:06:50
72阅读
快速中值滤波算法 中值滤波算法: 在图像处理中,在进行如边缘检测这样的进一步处理之前,通常需要首先进行一定程度的降噪。中值滤波是一种非线性数字滤波器技术,经常用于去除图像或者其它信号中的噪声。这个设计思想就是检查输入信号中的采样并判断它是否代表了信号,使用奇数个采样组成的观察窗实现这项功能。观察窗口中的数值进行排序,位于观察窗中间的中值作为输出。然后,丢弃最早的值,取得新的采样,重复上
转载
2024-03-26 16:28:51
119阅读
原理简述中值滤波是基于排序理论的一种能有效抑制噪声的非线性信号处理技术。它也是一种邻域计算,类似于卷积,但计算的不是加权求和,而是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围像素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点。它能减弱或消除傅里叶空间的高频分量,但影响低频分量。因为高频分量对应图像中的区域边缘的灰度值具有较大较快变化的部分,该
转载
2024-03-18 08:06:24
67阅读
滤波器是根据原有图像的某个像素的周围像素来确定新的像素值,滤波器主要的作用是用来消去噪声的,消除图像中的不合理的像素点。滤波器主要包括线性滤波器和非线性滤波器,其中线性滤波器包括均值滤波,方框滤波和高斯滤波,非线性的主要是中值滤波。主要介绍一下滤波器的原理和Opencv使用语法。 滤波器的概念线性滤波器方框滤波均值滤波高斯滤波非线性滤波器 滤波器的概念 在介绍滤波器的概念之前首先说明一下线性
转载
2024-05-20 22:18:54
79阅读
7.3.3 自适应滤波器自适应中值滤波器对于7.3.2节所讨论的中值滤波器,只要脉冲噪声的空间密度不大,性能还是可以的(根据经验需Pa和Pb小于0.2)。本节将证明,自适应中值滤波器可以处理更大概率的脉冲噪声。自适应中值滤波器的另一个优点是平滑非脉冲噪声时,试图保留细节,这是传统中值滤波器所做不到的。正如前面几节中所讨论的所有滤波器一样,自适应中值滤波器也工作于矩形窗口区域Sxy内。然
转载
2024-07-02 07:09:08
61阅读