CVMEANSHIFT算法可以分为以下4步: 1.选择窗的大小和初始位置. 2.计算此时窗口内的Mass Center. 3.调整窗口的中心到Mass Center. 4.重复2和3,直到窗口中心"会聚",即每次窗口移动的距离小于一定的阈值,或者迭代次数达到设定值。 cv库里的函数说明参考http://blog.csdn.net/sun
原创 2014-04-09 21:29:00
1363阅读
meanshift算法思想其实很简单:利用概率密度的梯度爬升来寻找局部最优。在opencv中,进行meanshift其实很简单,输入一张图像(imgProb),再输入一个开始迭代的方框(windowIn)和一个迭代条件(criteria),输出的是迭代完成的位置(comp )。函数原型:int cvMeanShift( const void* imgProb, CvRect windowIn,Cv
K均值聚类算法在cxcoer中,因为它在ML库诞生之前就存在了.K均值尝试找到数据的自然类别.用户设置类别个数,K均值迅速地找到"好的"类别中心."好的"意味着聚类中心位于数据的自然类别中心.K均值是最常用的聚类计数之一,与高斯混合中的期望最大化算法(在ML库中实现为CvEM)很相似,也与均值漂移算法(在CV库中实现为cvMeanShift())相似.K均值是一个迭代算法,在OpenCV中采用的是
转载 2024-04-08 21:27:24
96阅读