Table of Contents一、Net类的设计与神经网络初始化神经网络的要素Net类的设计成员变量与成员函数神经网络初始化权值初始化初始化测试二、前向传播与反向传播前言前向过程反向传播过程注意三、神经网络的训练和测试前言完善后的Net类训练测试四、神经网络的预测和输入输出解析神经网络的预测输出的组织方式和解析读取样本和标签五、模型的保存和加载及实时画出输出曲线模型的保存和加载实时画出输出曲线
Andrew Kirillov 著 Conmajia 译 2019 年 1 月 12 日原文发表于 CodeProject(2006 年 11 月 19 日),已获作者本人授权。本文介绍了一个用于神经网络计算的 C# ,并展示了如何用这个函数进行问题求解。 全文约 3700 字,建议阅读时间 8 分钟。原文是 13 年前的旧文章,这篇译文也是我早期学英语的习作。胜在题材选的好,人工智能基础
一、写在前面的话本章主要讲讲神经网络的数学基础,并将神经网络中浮夸的概念用合理的顺序整理一下。应该具备的数学基础说多不多:基本上熟悉导数、线代、概率,那么大部分内容就可以看懂了,然而再进行深入学习的话又需要了解一些微分流形的东西,这个东西也是函数导数所衍生的概念,想想也不是很复杂。但好事者给起了很多复杂的名字,比如PCA比如Adam,这无形中也增加了学习成本。以至于很多人学习过程的最大感受就是:我
作者丨东林钟声介绍:前段时间投入了大量的时间与精力编写了 Planer (Powerful Light Artificial NEuRon)框架,该框架仅依赖 NumPy 作为其矩阵计算,并设计了 JSON 格式的及其精简的中间表达格式。最终通过正则表达式对 PyTorch 模型 TorchScript 进行解析实现模型自动转换到 Planer 框架进行推理。笔者已经转换了多种 CNN 模型在
去年在学习Stanford的ML课程的时候整理过一篇BP神经网络原理的解析,链接地址,不过没有对它的code实现作太多的研究,只是用MATLAB的工具箱做了实验。Jeremy Lin具体的原理性资料可以参考:[1] BP神经网络解析          地址[2] Tom M.Mitchell 机器学习教程  地址BP网络算法流程
转载 2023-07-10 19:49:31
201阅读
      上一篇  C语言实现上 中介绍了程序实现时定义的一些数据结构、程序执行的流程以及 程序的基本骨架(详情见 C语言实现上)。留下了两个关键函数computO(i) 和 backUpdate(i) 没有分析实现,参数 i 代表的是第 i 个样本,本篇我们一起来分析下这两个函数的实现。BP神经网络输出     
前言      神经网络的理论知识上一篇博文已经介绍。本文主要是通过编程实现神经网络模型,并对给定样本集进行分类。我们知道神经网络分为输入层、隐层和输出层。各层在通过前向传播计算激活值和反向传播计算偏导数的时候,只要分清楚该层的输入、输出即能正确编程实现。      本文的C++代码主要来自于万能的网络,感谢众大神的开
转载 2023-09-11 15:51:37
98阅读
目录一.简介二.矩阵运算1.矩阵基本操作函数2.矩阵加减法3.矩阵乘法三.神经网络实现1.定义神经网络类2.激活函数ReLU3.激活函数Softmax4.交叉熵损失函数5.神经网络基本操作6.正向传播计算7.反向传播学习四.测试1.统计最近n次的平均识别误差2.定义监督学习的标签3.编写主函数4.测试结果 一.简介最近在学习神经网络相关的知识,为了巩固自己对相关知识的理解,尝试使用C语言来编写一
全连接神经网络C语言实现一、分析输入输出二、分析神经网络层数三、分析神经元数量四、分析参数数量五、分析传递过程连接方式六、代码框架七、完整代码实现: 一、分析输入输出1、手写体输入为28x28的黑白图片,所以输入为784个x 2、输出为识别0-9的数字的概率,所以有10个输出 3、输入只能是-1~1的小数,主要是防止计算溢出二、分析神经网络层数如果只是一层,输入784,输出10,中间能记录的神
  《python神经网络编程》一书给出了训练集,识别图片中的数字。测试集的链接如下:  https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneuralnetwork/master/mnist_dataset/mnist_test_10.csv为了方便,这只是一个小的测试集,才10个。  训练集链接:http
提出问题    对于二分类问题,使用二元交叉熵损失函数,对于多分类问题,可以用分类交叉熵损失函数,对于回归问题,可以使用均方误差,对于序列问题,可以使用联结主义时序分类损失函数CTC(connectionlist temppral classfication),但是对于以上指导解决不了的问题时,我们需要开发目标函数。选择创建新的网络结构。大脑的不同之处&nb
转载 2023-07-04 11:18:36
70阅读
C++从零实现神经网络一、Net类的设计与神经网络初始化闲言少叙,直接开始既然是要用C++来实现,那么我们自然而然的想到设计一个神经网络类来表示神经网络,这里我称之为Net类。由于这个类名太过普遍,很有可能跟其他人写的程序冲突,所以我的所有程序都包含在namespace liu中,由此不难想到我姓刘。在之前的博客反向传播算法资源整理中,我列举了几个比较不错的资源。对于理论不熟悉而且学习精神的同学可
我们常常忘记,我们站在巨人的肩膀上。机器学习、深度学习和人工智能已经获得了如此大的吸引力,以至于有许多可用的框架。今天,选择我们选择的框架(例如 ML.NET)并完全专注于我们试图解决的问题开始项目真的很容易。但是,有时最好停下来实际考虑我们正在使用的内容以及该东西的实际工作原理。由于我本人是一名转向机器学习的软件开发人员,因此我决定使用面向对象编程和 C# 从头开始构建神经网络。这是因
在Build 2013大会上,来自微软研究院的James McCaffrey在一场有趣的演讲中介绍了神经网络。尽管“使用Visual Studio开发神经网络”这个题目表明演讲是针对Visual Studio(VS)的,但实际上它也适用于任何希望更多了解神经网络(NN)的开发者。McCaffrey拥有数学博士学位,而在这场引人入胜的演讲中,他所面对的是拥有计算机科学背景的开发者们。\ McCaf
以下代码实现了只包含一个隐层的BP前馈神经网络。使用方法如下:1.编写配置文件配置文件为TXT文档,内容如下:Layers: 3 Layer1: 2 Layer2: 2 Layer3: 2 Group: 1000 Groupt: 1000 Learningrate: 0.9 Accuracy: 0.95 iterations_outer: 100000 iter_show: 50
这年头机器学习非常的火,神经网络算是机器学习算法中的比较重要的一种。这段时间我也花了些功夫,学了点皮毛,顺便做点学习笔记。介绍人工神经网络的基本理论的教科书很多。我正在看的是蒋宗礼教授写的《人工神经网络导论》,之所以选这本书,主要是这本比较薄,太厚的书实在是啃不动。这本书写的也比较浅显,用来入门正合适。看书的同时也在网上找了找人工神经网络代码。感觉 FANN 这个还不错,就顺道学了学这个
转载 2023-05-22 22:39:42
200阅读
可解释性是深度学习中最具挑战性的方面之一。理解一个神经网络,它有成千上万的神经元分布在数千个隐藏层中。大多数深层神经网络的互联性和复杂性使其不适合于传统的调试工具。因此,数据科学家通常依赖可视化技术来帮助他们理解神经网络是如何做出决定的,这成为一个持续的挑战。为了推进这一领域的发展,OpenAI刚刚推出了Microscope和Lucid,使神经网络中的神经元可以进行视化。在需要牺牲其他方面(例如
一、人工神经网络 人工神经网络(Artificial Neural Network,ANN),简称神经网络(Neural Network)或类神经网络,是一种模仿生物网络(动物的中枢神经系统,特别是大脑),的结构和功能的数学模型,用于对函数进行估计和近似。和其他机器学习方法一样,神经网络已经被用于解决各种各样的问题,例如:机器视觉和语音识别,这些问题都是很难被传基于规则的编程所解决的。1
经过一段时间的沉淀,楼主终于写出了一份自己比较满意的代码(其实还有很多瑕疵挑战着楼主的强迫症) 这份实现并非只是一个网络,而更像是神经网络 大家可以使用它对每一层的封装建立自己的神经网络 代码链接:https://github.com/Wchenguang/ShadowNet 简单的介绍: 1.总体上的架构是,将全连接层,输出层进行封装,同时引入了connector的数据结构,用于连接两层,使用
著名的人工智能软件都有什么?信息化社会,机器逐渐渗透到我们生活每个角落,彻底改变了我们的生活、工作和娱乐方式。从最小的Siri等语音助手,到行为算法、搜索算法,再到自动化汽车飞机驾驶。以上成就虽然已经足以让我们十分惊喜,但是这类人工智能技术仍处在起步阶段。但许多人所称或所理解的的人工智能未必如此,因为许多都是基于预定义的多面输入或用户行为的响应算法。通俗点讲,一个真正的人工智能系统是一个可以自己学
  • 1
  • 2
  • 3
  • 4
  • 5