卷积神经网络原理(CNN)卷积神经网络CNN的结构一般包含这几个层:输入层:用于数据的输入卷积层:使用卷积核进行特征提取和特征映射激励层:由于卷积也是一种线性运算,因此需要增加非线性映射池化层:进行下采样,对特征图稀疏处理,减少数据运算量。全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失CNN的三个特点:局部连接:这个是最容易想到的,每个神经元不再和上一层的所有神经元相连,而只和一小
一、 CNN结构演化历史的图二、 AlexNet网络2.1 ReLU 非线性激活函数多GPU训练(Training on Multiple GPUs)局部响应归一化(Local Response Normalization)重叠池化(Overlapping Pooling)2.2 降低过拟合( Reducing Overfitting)数据增强(Data Augmentation)Dropou
转载 2024-03-22 14:03:11
41阅读
深度学习的思想被提出后, 卷积神经网络在计算机视觉等领域取得了快速的应用, 有很多经典、有意思的网络框架也应然而生.1. LeNet-5LeNet-5卷积网络是由LeCun在1998年发表的《Gradient-Based Learning Applied to Document. Recognition》中提出的网络框架. 这是最早的一类卷积神经网络, 其在数字识别领域的应用方面取得了巨大的成功
怎么根据cnn网络的参数和输入图片大小,计算一个cnn网络的输出呢,下面来说明一下 现在做如下假设n:表示图像尺寸,比如图像尺寸为n*n*3f:表示卷积核尺寸,比如卷积核尺寸为f*f,可以用filter表示卷积核s:表示步进,卷积核一次移动多少个像素p:表示填充数目,表示一边填充p列像素,2p表示左右各填充p列像素,同样,在行上表示一边填充p行像素,2p表示上下各填充p行像素 于是我们就可以得到如
一、基础知识1.1卷积神经网络(CNN)CNN新出现了卷积层(Convolution层)和池化层(Pooling层), 这两种不同类型的层通常是交替的, 最后通常由一个或多个全连接层组成卷积网络的核心思想是将:局部感受野、权值共享(或者权值复制)以及时间或空间亚采样(池化)这三种结构思想结合起来获得了某种程度的位移、尺度、形变不变性.诺贝尔奖获得者神经生理学家Hubel和Wie-sel早在1960
我是 雪天鱼,一名FPGA爱好者,研究方向是FPGA架构探索和数字IC设计。一、简介单从字面上看,卷积神经网络这个词听起来就像是生物学和数学的诡异组合,里面可能还掺了一点计算机科学的意味,但这种神经网络一直在为计算机视觉领域默默贡献着最具影响力的创新。2012年是神经网络蓬勃发展的第一年,Alex Krizhevsky利用它们在当年的ImageNet竞赛中赢得了胜利,把分类错误率从原来的26%降低
cnn,就是一层搞定一层的事情,从局部到全局.就像打仗一样.各干好各的事情.最终最上得到一个大致的东西.如一张图片.这一层:识别是什么笔画,下一层识别是什么中文汉字.再下一层识别是什么意思.就是一个不断映射变化最后得出结论的过程....
原创 2021-08-19 16:52:16
505阅读
cnn,就是一层搞定一层的事情,从局部到全局.就像打仗一样.各干好各的事情.最终最上得到一个大致的东西.如一张图片.这一层:识别是什么笔画,下一层识别是什么中文汉字.再下一层识别是什么意思.就是一个不断映射变化最后得出结论的过程....
原创 2022-02-09 16:33:22
236阅读
 前几天在看CS231n中的CNN经典模型讲解时,花了一些时间才搞清楚卷积层输入输出的尺寸关系到底是什么样的,现总结如下。(可以参照我画的题图理解卷积层的运算) 卷积层尺寸的计算原理输入矩阵格式:四个维度,依次为:样本数、图像高度、图像宽度、图像通道数输出矩阵格式:与输出矩阵的维度顺序和含义相同,但是后三个维度(图像高度、图像宽度、图像通道数)的尺寸发生变化。权重矩阵(卷积核)
转载 2024-03-21 10:12:44
69阅读
#####R-CNN: 流程主要分为四步:1. 利用选择性搜索(Selective Search)等区域生成算法在输入图像中提取Region Proposal(大概2000个);2. 将第一步中产生的每个Region Proposal分别resize后(也即图中的warped region,文章中是归一化为227×227)作为CNN网络的输入;3. CNN网络提取到经过resize的region
      目前主流的FPGA仍是基于查找表技术的,已经远远超出了先前版本的基本性能,并且整合了常用功能(如RAM、时钟管理 和DSP)的硬核(ASIC型)模块。如图1-1所示(注:图1-1只是一个示意图,实际上每一个系列的FPGA都有其相应的内部结构),FPGA芯片主 要由6部分完成,分别为:可编程输入输出单元、基本可编程逻辑单元、完整的时钟管理、嵌入块式RAM、丰
SIFT(Scale-Invariant Feature Transform)尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。在CNN用来图像特征提取之前,SIFT算是
本文讲解的是Yunchao Gong发表在2014年的ECCV会议上的,“Multi-Scale Orderless Pooling of Deep Convolutional Activation Features”,中文译名是深度卷积激活特征的多尺度无序池化,其中提出了一种多尺度无序池化卷积神经网络,简称是MOP-CNN,下文称为MOP。先谈核心思想,MOP是对CNN中的特征的有效改进。神经网
引入和代码项目简介https://github.com/songyingxin/Bert-TextClassification模型有哪些?使用的模型有下面七个BertOrigin,BertCNN, BertLSTM, BertATT, BertRCNN, BertCNNPlus, BertDPCNN通用数据集情感分类: 采用 IMDB, SST-2, 以及 Yelp 数据集。IMDB: run_i
深度学习是当今最火的研究方向之一。它以其卓越的学习能力,实现了AI的关键功能。 一般来说,深度学习一次肯定是不够的,那到底学习多少次合适呢?翻了翻各位大牛的研究成果,有训练10个迭代的,有30个,甚至也有1万个以上的。这就让小白迷茫了,到底训练多少次合适?训练的检验标准是什么?有一些大牛上来直接就说训练多少次,也不解释为什么,就说是凭经验,这种我们学不来。还有一些专家给出了一些理由,我
什么时候用到CNN?CNN的出现是由观察图片的这三点特征得出的: 1)图片中需要识别的图案(pattern)远小于整张图片,因此我们不需要遍历整张图片去找出这个图案; 2)同样的图案可能出现在不同的位置,但它们的性质是一样的,因此可以采用相同的参数; 3)对一张图片的像素点采用下采样的方式不改变整体检测目标 根据这三个特征,我们就得到了CNN的实现框图:CNN的原理CNN是DNN的一种简单实现。
转载 2023-11-26 20:03:07
140阅读
 待学习区:1、先提一嘴,还有个正则化的没学。(减少过拟合)2、还一个 CNN反向传播没学。代码基于keras库LeNet-51、网络结构400是5*5*16个参数,经过两层全连接层Fully connected layer最后到0-9这十个神经元输出。450+6是5×5×3×6个+6个偏置,一个卷积核一个偏置。48000+120就是用120个神经元处理400个特征,120×400+12
转载 2024-03-20 23:10:58
28阅读
终于等到了这个交互式学习神器,把 CNN 的工作过程画得明明白白,帮助萌新轻松入门。什么CNN?Convolutional Neural Network,中文译为「卷积神经网络」。这个常见但有些深奥的词汇,只可意会,不能言传。如果打开教材,会看到这样一些解释:卷积层是深度神经网络在处理图像时十分常用的一种层。当一个深度神经网络以卷积层为主体时,我们也称之为卷积神经网络。神经网络中的卷积层就是用
转载 2024-03-22 15:58:09
94阅读
1. CNN+RNN 相同点都是传统神经网络的扩展;前向计算产生结果,反向计算进行模型的更新;每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接。不同点CNN进行空间扩展,神经元与特征卷积;RNN进行时间扩展,神经元与多个时间输出计算;RNN可以用于描述时间上连续状态的输出,有记忆功能;CNN则用于静态输出;CNN高级结构可以达到100+深度;RNN的深度有限。组合的意
转载 2024-04-08 10:16:17
43阅读
真英雄,成名于少林寺武侠大会;好算法,验证在斯坦福公开数据。 武侠小说中一个公平且有影响力的平台,可以让侠之大者脱颖而出,科研也是,一个优秀的公开数据集可以让好算法脱颖而出,并同时让那些靠吹的算法身败名裂。本文将详细叙述今年目前为止自然语言处理界最重量级的数据集 SQuad。 1. SQuAD是什么? SQuAD 是斯坦福大学于
  • 1
  • 2
  • 3
  • 4
  • 5