一、综述类文章A Comprehensive Survey on Graph Neural Networks(2019) 论文翻译:该文章主要介绍了GNN简史、GNN的主要发展方向、GNN的分类等。再结合相关文章总结如下:GCN(graph convolutional network)的远古祖先可以往GNN(graph neural network)上靠。GCN主要针对的数据结构是图(graph)
首先明确几个关于图像处理的基本概念——卷积,滤波,平滑原文链接 1.图像卷积(模板) (1).使用模板处理图像相关概念: 模板:矩阵方块,其数学含义是一种卷积运算。 卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别于卷积核(权矩阵)的每个元素对应相 乘,所有乘积之和作为区域中心像素的新值。 卷积核:卷积时使用到的权用一个矩阵表示,该矩阵是一个权矩阵。 卷积示例: 3 * 3 的像
转载
2024-09-09 22:22:06
46阅读
Unity Shader 学习笔记(20) 卷积、卷积核、边缘检测算子、边缘检测卷积(convolution)、卷积核(kernel)卷积:使用卷积核对图像每一个像素进行操作。卷积核: 四方形网格结构,每个方格都有一个权重值。也称边缘检测算子。对图像某个像素卷积时,把卷积核中心放置在像素上,翻转核(水平翻转+竖直翻转),依次计算每个元素和重合像素的乘积并求和,得到新的像素值。边缘检测算子即用于边缘
转载
2024-10-25 13:18:44
84阅读
图卷积网络这里的图是指Graph,一种数据结构。 图卷积网络关键问题在于如何定义在图上的卷积操作。目前有两种方法:谱方法空间方法已经证明,谱方法是空间方法的一种特例。本文将简要介绍目前关于图卷积操作的基本方法,以其基于paddlepaddle平台实现了其中一种称为GCN的图卷积网络。由于图像可以视为一种特殊的Graph。因此图卷积网络也可以处理图像的数据。将实现后的网络用于MNIST数据集做图的分
转载
2024-03-29 11:38:03
137阅读
上一节介绍了LeNet-5经典卷积网络模型的构成以及如何实现这样的一个网络,并且在实现的模型上达到了99%的正确率,但是LeNet-5缺乏对于更大更多图片的一个分类的功能。在2012年,有人提出了新的深度卷积神经网络模型AlexNet。在2012的ILSVRC竞赛中,AletNet模型取得了top-5错误率为15.3%的好成绩,对比于第二名16.2%的错误率,AlexNet的优势明显。从此,Ale
转载
2024-04-25 19:56:32
26阅读
卷积运算与相关运算在计算机视觉领域,卷积核、滤波器通常为较小尺寸的矩阵,比如\(3\times3\)、\(5\times5\)等,数字图像是相对较大尺寸的2维(多维)矩阵(张量),图像卷积运算与相关运算的关系如下图所示(图片来自链接),其中\(F\)为滤波器,\(X\)为图像,\(O\)为结果。相关是将滤波器在图像上滑动,对应位置相乘求和;卷积则先将滤波器旋转180度(行列均对称翻转),然后使用旋
转载
2023-08-12 21:20:43
282阅读
文章目录图像卷积互相关运算卷积层图像中目标的边缘检测学习卷积核小结 图像卷积最近学习到了卷积深度网络,有些本质概念太深暂时还没有理解透彻,现在主要记录下卷积神经网络中的一些计算。以下介绍与计算均出自李沐老师的《动手学深度学习》,如有疑问请看原文或在下方留言。互相关运算严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算。 在卷积
转载
2023-09-05 10:00:55
84阅读
一、卷积神经网络卷积神经网络包括:卷积层、激活函数、池化层、全连接层通常把神经网络的隐藏层分为 卷积层和池化层二、卷积层块一般包括:卷积层+激活函数+汇聚层(池化层,又叫下采样层)三、概念及作用1)卷积层(Convolutional layer)通过卷积操作(线性操作,即在原始图像上平移)对输入图像进行降维和特征提取如图所示,卷积层实际上,就是按照模板(卷积核)的样子扫描原始图像,图像的
转载
2023-08-26 12:55:16
544阅读
目录1.前言:2.CNN的卷积过程:3.CNN的池化过程:4.CNN的激活过程:5.总结:1.前言:神经网络在好几年前出现感觉像是一个降维打击,适用的场景包括股市分析,环境监测,医学影像,生物信息基因序列等等等等,最近这几年来,随着越来越多的人去了解神经网络后,神经网络已经是火的一塌糊涂了。而毫不夸张的说,现在处在的这个人工智能的时代,我们作为参与者或多或少会用过的一些东西,可能这些东西背后的算法
转载
2023-10-13 00:07:05
111阅读
卷积神经网络——卷积操作在上一篇《卷积神经网络简介》里我们介绍了卷积神经网络包含四个主要的操作,其中最重要的就是本文要讲述的“卷积”操作。对于CNN,卷积操作的主要目的是从输入图像中提取特征。卷积通过使用输入数据的小方块学习图像特征来保留像素之间的空间关系。 图 1
卷积操作就是卷积核(过滤器 / Filter)在原始图片中进行滑动得到特征图(Feature Map)的
转载
2023-08-16 16:42:47
353阅读
卷积过程是卷积神经网络最主要的特征。然而卷积过程有比较多的细节,初学者常会有比较多的问题,这篇文章对卷积过程进行比较详细的解释。1.卷积运算首先我们需要知道什么是卷积计算,它其实是一种简单数学运算,有两个步骤:一个是矩阵内积乘法,另一个是将内积乘法的结果进行全加。 (1)矩阵内积乘法 矩阵的内积乘法非常简单,就是把两个相乘的矩阵,相同位置的元素进行乘法运算,这个时候会得到一个新的矩阵(在这里我们需
转载
2023-08-11 10:13:07
346阅读
一、卷积网络中的迁移学习要做一个项目或应用时,先从GitHub下载别人的代码下来,因为别人一般都是训练好的,且初始权重值也一般比较好。所以就从别人搭好的框架开始修改自己的代码。例如:自己家有两只猫,一只Tiggar,一只Misty。所
原创
2021-06-04 19:33:32
662阅读
ConvNets
卷积神经网络的结构基于一个假设,即输入数据是图像,基于该假设,我们就向结构中添加了一些特有的性质。这些特有属性使得前向传播函数实现起来更高效,并且大幅度降低了网络中参数的数量。
转载
2023-07-31 16:58:42
910阅读
反卷积 deconvolution在应用在计算机视觉的深度学习领域,由于输入图像通过卷积神经网络(CNN)提取特征后,输出的尺寸往往会变小,而有时我们需要将图像恢复到原来的尺寸以便进行进一步的计算(e.g.图像的语义分割),这个采用扩大图像尺寸,实现图像由小分辨率到大分辨率的映射的操作,叫做上采样(Upsample)。上采样有3种常见的方法:双线性插值(bilinear),反卷积(Transpos
转载
2024-03-18 14:42:33
110阅读
卷积神经网络是目前计算机视觉中使用最普遍的模型结构,包括:卷积(Convolution)池化(pooling)ReLU激活函数批归一化(Batch Normalization)丢弃法(Dropout) 说明:在卷积神经网络中,计算范围是在像素点的空间邻域内进行的,卷积核参数的数目也远小于全连接层。卷积核本身与输入图片大小无关,它代表了对空间邻域内某种特征模式的提取。比如,有些卷积核提取物
转载
2023-08-13 19:44:53
234阅读
一、卷积神经网络的基本概念卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层(池化层)构成的特征抽取器。由此可知,普通的网络只有分类之类的作用,像我们的svn等。
在CNN的一个卷积层中,通常包含若干个特征图(featureMap),每个特征图由一些矩形排列的的神经元组成,同一特征图的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络
转载
2023-11-11 23:47:05
136阅读
卷积神经网络所做的工作就是采用卷积、池化等操作从数据中提取特征,进行分类,回归等机器学习任务。1.卷积在原始的输入上进行特征的提取。三种卷积方法:valid,full ,same。 图1:valid卷积(不补零) 图2:full卷积 蓝色为原图像,白色为对应卷积所增加的padding,通常全部为0,绿色是卷积后图片。图6的卷积的滑动是从卷积核右下角与图片左上角重叠开始进行卷积,滑动步长为1,卷积核
转载
2023-07-29 13:47:36
0阅读
最近GCN非常火,虽然个人暂时用不到GCN,但还是简单看了下理论,感觉不是特别复杂,但是似乎实现上较为有难度,尤其是高维的图表示,先转载一篇机器之心的文章学习一下,感觉GCN主要是处理复杂的关系网络,与常见的CV和NLP任务并不十分相同。 何为图卷积网络? GCN 是一类非常强大的用于图数据的神经网络架构。事实上,它非常强大,即使是随机初始化的两层 GCN 也可以生成图网络中节
转载
2024-10-25 13:17:08
41阅读
一般来说CNN具有卷积层,池化层和完全连接层FC(正如在常规神经网络中所见),在池化层之前一般会有个激活函数。CNN局部连接:每个神经元不再和上一层的所有神经元相连,而只和一小部分神经元相连。这样就减少了很多参数 权值共享:一组连接可以共享同一个权重,而不是每个连接有一个不同的权重,这样又减少了很多参数。(用通俗的话说,一张特征图,是由同一个卷积核扫描一张原图得到的,共享体现在原图每个小的感知野共
转载
2023-11-14 09:31:00
119阅读
反卷积是指,通过测量输出和已知输入重构未知输入的过程。在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积网络模型,没有学习训练的过程。对于一个复杂的深度卷积网络,通过每层若干个卷积核的变换,我们无法知道每个卷积核关注的是什么,变换后的特征是什么样子。通过反卷积的还原,可以对这些问题有个清晰的可视化,以各层得到的特征图作为输入,进行反卷积,得到反卷积结果,用以验证显示各
转载
2023-08-29 21:02:26
266阅读