学习(二)一:网络简介 网络(Bayesian network),又称信念网络(belief network)或是有向无环图模型(directed acyclic graphical model),是一种概率图型模型。 网络又称信度网络,是Bayes方法的扩展,是目前不确定知识表达和推理领域最有效的理论模型之一。从1988年由Pearl提出后,已经成为近几年来研究的热点.。
# Python使用简介 在概率论和统计学领域,网络(Bayesian Network)是一种用于表示变量间的条件依赖关系的图模型。通过它,我们可以实现对不确定性问题的推理和决策,使其在机器学习、数据挖掘等领域得到了广泛的应用。本文将通过详细的代码示例,展示如何在Python使用网络。 ## 什么是网络? 网络由有向无环图构成,节点代表随机变量,边代表变量之
原创 2024-10-25 04:32:39
53阅读
回顾在文章《朴素》中,小夕为大家介绍了朴素模型的基本知识,并且得出了朴素是利用联合概率P(x1,x2,x3...xn,y)来确定某个样本为某个类别的概率,进而利用最大后验概率(MAP)来决策类别。也就是说,朴素的假设函数如下:其中,假设有c个类别,则i=1,2,...,c。(补充:argmax大家应该都熟悉了吧,意思就是返回使函数值最大的参数,这里的函数即P(X,yi),参
原创 2020-12-23 19:29:04
1251阅读
1点赞
回顾在文章《朴素》中,小夕为大家
与频率派思想频率派思想    长久以来,人们对一件事情发生或不发生,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大。而且事情发生或不发生的概率虽然未知,但最起码是一个确定的值。比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会立马告诉你,取出白球
朴素算法(1)超详细的算法介绍朴素算法(2)案例实现github代码地址引言关于朴素算法的推导过程在朴素算法(1)超详细的算法介绍中详细说明了,这一篇文章用几个案例来深入了解下算法在三个模型中(高斯模型、多项式模型、伯努利模型)的运用。案例一:多项式模型特征属性是症状和职业,类别是疾病(包括感冒,过敏、脑震荡) 某个医院早上收了六个门诊病人,如下表:症状职业疾病打喷嚏
朴素(Naive Bayes)=  Naive + Bayes 。(特征条件独立 + Bayes定理)的实现。零、贝叶斯定理(Bayes' theorem)所谓的方法源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。在写这篇文章之前,人们已经能够计算“正向概率”,如“假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球
文章目录1、朴素公式1.1、公式的应用2、了解网络2.1、知道什么是网络2.2、网络的两种表示形式2.3、掌握全连接的网络的公式2.3、知道条件概率表参数个数分析的方法2.4、掌握变量联合分布概率的公式及含义2.5、知道马尔科夫模型3、了解D-separation3.1、知道下面的三个通过网络判定条件独立3.2、有向分离的实例4、了解网络的生成过程
# 如何使用朴素贝叶斯分类器进行文本分类 朴素(Naive Bayes)是一种简单而有效的分类算法,常用于文本分类问题,比如垃圾邮件识别或情感分析。作为一名刚入行的小白,可能会对如何在Python中实现朴素感到迷茫。本文将为你提供清晰的流程和示例代码,帮助你快速上手。 ## 整体流程 在实现朴素贝叶斯分类器时,可以按照以下步骤进行操作: | 步骤 | 描述 | |------|
原创 2024-10-01 10:10:01
41阅读
                                                 主观bayes推理主观方法的概率论基础全概率公
贝叶斯定理是用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻导出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(B|A) = P(A|B)*P(B) / P(A)。的统计学中有一个基本的工具叫公式、也称为法则, 尽管它是一个数学公式,但其原理毋需数字也可明了。如果你看到一个人总是做一些好事,则
一、决策  决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率已知的理想情形下,考虑如何基于这些概率和误判损失来选择最优的类别标记。      朴素分类算法是基于贝叶斯定理与特征条件独立假设的分类方法。1、条件概率  概率指的是某一事件A发生的可能性,表示为P(A)。  条件概率指的是某一事件A已经发生了条
一、概述  算法是一系列分类算法的总称,这类算法均是以贝叶斯定理为基础,所以将之统称为分类。而朴素(Naive Bayesian)是其中应用最为广泛的分类算法之一。  朴素贝叶斯分类器是基于一个简单的假定:给定目标值时属性之间相互条件独立。二、核心思想  用p1(x, y)表示数据点(x, y)输入类别1的概率,用p2(x, y)表示数据点(x, y
# Python实现步骤 作为一名经验丰富的开发者,我将教给你如何实现Python算法。下面是整个实现过程的流程。 | 步骤 | 操作 | | ---- | ---- | | 1. | 收集数据 | | 2. | 准备数据:将数据转换为适合进行算法的格式 | | 3. | 分析数据:使用公式计算概率 | | 4. | 训练算法:从数据中计算出概率 | |
原创 2023-07-22 18:18:03
92阅读
贝叶斯分类器原理:基于先验概率P(Y),利用公式计算后验概率P(Y/X)(该对象属于某一类的概率),选择具有最大后验概率的类作为该对象所属类特点:数据可离散可连续;对数据缺失、噪音不敏感;若属性相关性小,分类效果好,相关也不低于决策树朴素算法学习的内容是先验概率和条件概率(都使用极大似然估计这两种概率),公式很难敲,不敲了scikit-learn中根据条件概率不同的分布有多种分类
 公式由英国数学家 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系。原本是个神父,他为了证明上帝的存在而发明了著名的公式。然而他本人并不知道他所发明的公式及其背后的思想对当今社会产生重大变革,最典型的的莫过于当今炙手可热的“人工智能+”时代下,是人工智能的分支:机器学习,所必备的方法之一。上图就是著名的公式,估计很
贝叶斯定理相关公式:先验概率P(A):在不考虑任何情况下,事件A发生的概率条件概率P(B|A):事件B发生的情况下,事件B发生的概率后验概率P(A|B):在事件B发生之后,对事件A发生的概率的重新评估全概率:如果A和A’构成样本空间的一个划分,那么事件B的概率为:A和A’的概率分别乘以B对这两个事件的概率之和。贝叶斯定理:朴素:对于给定样本的特征向量;根据公式,该样本的类别的概率为:假
认知计算,还要从滤波的基本思想讲起,本文主要是对《Probabilistic Robotics》中滤波器部分的详细讲解。这一部分,我们先回顾公式的数学基础,然后再来介绍滤波器。(一). 概率基础回顾我们先来回顾一下概率论里的基本知识:1. \( X \):  表示一个随机变量,如果它有有限个可能的取值\( \{x_1, x_2, \cdots, x_n \} \)
编辑导语:做过数据分析的人,想必对模型都不会陌生。预测模型是运用统计进行的一种预测,不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。通过实证分析的方法,将预测模型与普通回归预测模型的预测结果进行比较,结果表明预测模型具有明显的优越性。 说到模型,就算是不搞数据分析的都会有所耳闻,因为它的应用范围实在是太广泛了。大数据、机器学习、数据挖
公式=贝叶斯定理公式到底想说啥公式就是想用概率数学来表示事件发生依赖关系。公式长下面这样:用图形怎么表示公式就是X的面积。就是Y的面积。是什么?是指Y发生的情况下X发生的概率。用图形表示就是,只看Y的情况下Y里面的X占比多少。这不就是相交部分除以Y的面积么?相交部分计算方式=X的面积*相交部分占X的比率。再看看前面的公式就完全能理解了。公式在机器学习中有什么用?
转载 2023-10-07 14:56:56
124阅读
  • 1
  • 2
  • 3
  • 4
  • 5