1. 朴素算法简介朴素算法是有监督的学习算法,解决的是分类问题,如客户是否流失、是否值得投资、信用等级评定等多分类问题。该算法的优点在于简单易懂、学习效率高、在某些领域的分类问题中能够与决策树、神经网络相媲美。但由于该算法以自变量之间的独立(条件特征独立)性假设为前提,就会导致算法精度在某种程度上受影响。朴素法是基于贝叶斯定理与特征条件独立假设的分类方法,是一种典型的生成方法,即
朴素1.简介    朴素法是典型的生成学习方法,生成方法由训练数据得到联合概率分布P(X,Y)和先验概率P(X),在训练的过程中求得后验概率P(Y|X),即:P(X,Y)=P(Y|X)P(Y),在测试时去求P(X|Y),而前几篇文章介绍的算法都是基于判别的模型,直接去拟合后验概率,注意这里为什么要叫朴素,朴素的原因就是因为它的特征都是独立不会互相影响的。2.流
转载 2024-09-26 16:25:49
13阅读
有一个常见的问题:你想使用某个机器学习算法,但它总有一些难搞的超参数。例如权重衰减大小,高斯核宽度等等。算法不会设置这些参数,而是需要你去决定它们的值。如果不把这些参数设置为“良好”的值,这个算法就不会起作用。那么你会怎么做呢?下面我列出了我见过的人们的做法,从最常见到最不常见排序: 猜测和检查:听从你的直觉,选择感觉不错的数字,看看它们是否工作。一直持续这样做,直到厌倦。网格搜索:让计算机尝试
转载 2024-01-13 20:58:29
58阅读
本节内容:算法概述推导实例拼写纠错实例垃圾邮件过滤实例实现拼写检查器1、算法概述    2、推导实例        3、拼写纠错实例      4、垃圾邮件过滤实例 &
转载 2023-11-14 10:50:19
166阅读
朴素(Naive Bayes)=  Naive + Bayes 。(特征条件独立 + Bayes定理)的实现。零、贝叶斯定理(Bayes' theorem)所谓的方法源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。在写这篇文章之前,人们已经能够计算“正向概率”,如“假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球
朴素算法(1)超详细的算法介绍朴素算法(2)案例实现github代码地址引言关于朴素算法的推导过程在朴素算法(1)超详细的算法介绍中详细说明了,这一篇文章用几个案例来深入了解下算法在三个模型中(高斯模型、多项式模型、伯努利模型)的运用。案例一:多项式模型特征属性是症状和职业,类别是疾病(包括感冒,过敏、脑震荡) 某个医院早上收了六个门诊病人,如下表:症状职业疾病打喷嚏
一、决策  决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率已知的理想情形下,考虑如何基于这些概率和误判损失来选择最优的类别标记。      朴素分类算法是基于贝叶斯定理与特征条件独立假设的分类方法。1、条件概率  概率指的是某一事件A发生的可能性,表示为P(A)。  条件概率指的是某一事件A已经发生了条
                                                 主观bayes推理主观方法的概率论基础全概率公
贝叶斯定理是用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻导出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(B|A) = P(A|B)*P(B) / P(A)。的统计学中有一个基本的工具叫公式、也称为法则, 尽管它是一个数学公式,但其原理毋需数字也可明了。如果你看到一个人总是做一些好事,则
一、概述  算法是一系列分类算法的总称,这类算法均是以贝叶斯定理为基础,所以将之统称为分类。而朴素(Naive Bayesian)是其中应用最为广泛的分类算法之一。  朴素贝叶斯分类器是基于一个简单的假定:给定目标值时属性之间相互条件独立。二、核心思想  用p1(x, y)表示数据点(x, y)输入类别1的概率,用p2(x, y)表示数据点(x, y
# Python实现步骤 作为一名经验丰富的开发者,我将教给你如何实现Python算法。下面是整个实现过程的流程。 | 步骤 | 操作 | | ---- | ---- | | 1. | 收集数据 | | 2. | 准备数据:将数据转换为适合进行算法的格式 | | 3. | 分析数据:使用公式计算概率 | | 4. | 训练算法:从数据中计算出概率 | |
原创 2023-07-22 18:18:03
92阅读
辨析极大似然估计,朴素贝叶斯分类器,半朴素贝叶斯分类器等   理论应用于机器学习方面产生了多种不同的方法和多个定理,会让人有些混淆。主要有最大后验概率,极大似然估计(MLE),朴素贝叶斯分类器,还有一个最小描述长度准则。\(\lambda_{ij}\)是将实为\(c_j\)的样本标记为\(c_i\)的损失,则将样本\(x\)标记为\(c_i\)的期
        学期末的综述报告我选择了分类,既然已经写了就将它分享一下。 主要目的就是以教促学。   如有问题欢迎在评论区进行讨论。        随着现代社会信息技术的发展,对于数据的挖掘越来越重要,分类是数据挖掘中应用领域极其广泛的技术之
朴素斯基础基本概念:条件概率:指事件 AB 已经发生条件下的概率 贝叶斯定理:P(AB)=P(A∣B)∗P(B)--->先验概率:先验概率(Prior Probability)指的是根据以往经验和分析得到的概率。例如以上公式中的 P(A),P(B)P(A),P(B),又例如:XX的概率 P(X)=0.5P(X)=0.5 。其中&
1.1.10. Bayesian Regression一、简介概率理论体系在机器学习中有着举足轻重的地位。其实很多时候,我们机器学习的算法从本质上来看,就是一种统计学习方法。所以,概率学派的很多思想,是理解机器学习的关键所在。回归显然是理论在线性回归的一个应用。sklearn一上来就给出了一条很重要的性质:在概率模型中,我们用参数的概率分布(参数本身具有分布的形式),
转载 2023-09-28 01:06:27
152阅读
一、朴素分类简介朴素(Naive Bayesian)是基于贝叶斯定理和特征条件独立假设的分类方法,它通过特征计算分类的概率,选取概率大的情况进行分类,因此它是基于概率论的一种机器学习分类方法。因为分类的目标是确定的,所以也是属于监督学习。朴素有如下几种:离散型朴素: MultinomialNB连续型朴素: GaussianNB混合型朴素: MergedNB二、原
的原理类似于概率反转,通过先验概率推导出后验概率。其公式如下: 在大数据分析中,该定理可以很好的做推导预测,很多电商以及用户取向可以参照此方式,从已有数据推导出未知数据,以归类做后续操作。例如,在一个购房机构的网站,已有8个客户,信息如下:用户ID年龄性别收入婚姻状况是否买房127男15W否否247女30W是是332男12W否否424男45W否是545男30W是否656男32W是是731男1
贝叶斯分类器原理:基于先验概率P(Y),利用公式计算后验概率P(Y/X)(该对象属于某一类的概率),选择具有最大后验概率的类作为该对象所属类特点:数据可离散可连续;对数据缺失、噪音不敏感;若属性相关性小,分类效果好,相关也不低于决策树朴素算法学习的内容是先验概率和条件概率(都使用极大似然估计这两种概率),公式很难敲,不敲了scikit-learn中根据条件概率不同的分布有多种分类
零、前言:模型估计问题的总结模型分为确知模型与概率模型。确知模型的输出是一个确定的值,如:买x斤苹果,每斤苹果2元,总价值为y=2x;而概率模型输出的是自变量的概率,如:一个不均匀的四面体骰子,出现对应点数的概率和点数的大小相关,P(x)=y=0.1x。我们这里主要讨论概率模型在这里首先规定符号:假设是iid的一组抽样,并记作模型是对数据的描述,用一些参数和变量及它们的数学关系刻画,记作,其中X代
#coding:utf-8 from numpy import * #加载文档词向量数据以及相应文档类别,0表示正常言论,1表示侮辱性文字 def loadDataSet(): postingList = [['my','dog','has','flea','problems','help','please'], ['maybe','not','tak
转载 2023-08-28 14:04:17
128阅读
  • 1
  • 2
  • 3
  • 4
  • 5