1.卷积神经网络模型常见组成形式构建神经网络完成手写数字识别,这个网络模型受经典网络模型LeNet—5启发,许多参数选择和LeNet—5相似。卷积层输入32*32*3矩阵,过滤器参数如图,有6个过滤器,加上偏差,再应用非线性函数 ,输出Conv1 28*28*6;池化层采用maxpool ,f=2,s=2,相当于这层H、W维度减少一半 ,输出Pool1 14*14*6。conv1+pool1作为L
转载
2023-10-13 00:01:38
170阅读
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。卷积神经网络具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为“平移不变人工神经网络”。在正式介绍之前,默认已经了解了神经网络的相关知识。下面我们演示一下怎么对一个图像做卷积:首先,我们要搞清楚一张照片是如何输入到神经
转载
2023-10-12 13:20:01
598阅读
1、卷积计算卷积运算实现垂直边缘检测过滤器检测不同方向的边缘Padding 输入图片维度信息是[6,6],卷积核尺寸[3,3],padding=1,步长stride=1,经过卷积运算之后输出图片维度信息也是[(6+2x1-3+1),(6+2x1-3+1)],这样也就保持维度信息的一致性,不致于特征信息丢失。 计算公式:n = (n-f+2p)/s+1 ,n是指输入/输出维度信息,f是卷积核或过滤器
转载
2023-08-21 17:59:55
169阅读
卷积神经网络为什么要用卷积神经网络-卷积神经网络的作用防止model overfitting在计算机视觉中,input vector往往维度很高,将其直接应用于neural network很有可能会造成overfitting,以下图为例: 在“cat recognition”中,cat image为64643的vector,将其转换到一维空间,则其维度为12288,如此高维的input直接输入ne
转载
2024-02-19 11:06:42
33阅读
控制caffe模型的训练过程一、实验介绍1.1 实验内容上次实验,我们已经构建好了卷积神经网络,我们的模型已经蓄势待发,准备接受训练了。为了控制训练进程,记录训练过程中的各种数据,caffe还需要定义另一个solver.prototxt文件,这次实验我们就来完成它,并开始激动人心的训练过程。1.2 实验知识点可变的学习速率正则化1.3 实验环境caffe 1.0.0二、实验步骤2.1 指定网络定
转载
2024-02-05 20:04:23
130阅读
卷积神经网络(CNN)之一维卷积、二维卷积、三维卷积详解转载自: 由于计算机视觉的大红大紫,二维卷积的用处范围最广。因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用。1. 二维卷积图中的输入的数据维度为14×14,过滤器大小为5×5,二者做卷积,输出的数据维度为10×10(14−5+1=10)。如果你对卷积维度的计算不清楚,可以参考我之前的博客吴恩达深度学习
转载
2023-10-13 21:38:15
196阅读
一、简介卷积神经网络(Convolutional neural network, CNN),属于人工神经网络的一种,被应用于图像识别、语音识别等各种场合。我们知道,神经网络的基本组成包括输入层、隐藏层、输出层。卷积神经网络的特点就在于隐藏层分为卷积层和池化层。卷积层,通过一块卷积核在原始图像上平移来提取特征,每一个特征就是一个特征映射;池化层,通过汇聚特征后稀疏参数来减少要学习的参数,降低网络的复
转载
2023-10-10 11:35:42
477阅读
卷积神经网络CNN总结从神经网络到卷积神经网络(CNN) 我们知道神经网络的结构是这样的:那卷积神经网络跟它是什么关系呢? 其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进。比如下图中就多了许多传统神经网络没有的层次。 卷积神经网络的层级结构 • 数据输入层/ Input layer
转载
2023-09-27 13:20:13
136阅读
AI领域是一个非常交叉的领域,涉及很多技术:数学、软体、硬件和,尤其还有硬件环节,不过一切来源或输入的入口一般有三个:一个是图像识别和处理是其中一个非常重要的环节,一个是自然语言处理,还有一个就是借口输入。一、这是一个python卷积神经网络的代码(开源):https://github.com/yangshun2005/CNN_sentence 二、下面是一些基本公式,以备忘:写CNN的
转载
2023-08-10 17:29:39
390阅读
卷积学习网络1.卷积神经网络简介一般的前馈神经网络权重参数矩阵过大,过拟合风险很高,并且在做图像处理时需要将图像展开为向量,这会丢失一些空间信息,于是在此基础上开发出卷积神经网络作为优化。卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,与普通前馈神经网络不一样的是,卷积神经网络的输入层为图像数据(32x32x3矩阵)而不是将图像数据展开为向量计算,隐含层不再仅仅是神经层简单的线性非线性
转载
2023-08-18 20:40:14
552阅读
卷积运算与相关运算在计算机视觉领域,卷积核、滤波器通常为较小尺寸的矩阵,比如\(3\times3\)、\(5\times5\)等,数字图像是相对较大尺寸的2维(多维)矩阵(张量),图像卷积运算与相关运算的关系如下图所示(图片来自链接),其中\(F\)为滤波器,\(X\)为图像,\(O\)为结果。相关是将滤波器在图像上滑动,对应位置相乘求和;卷积则先将滤波器旋转180度(行列均对称翻转),然后使用旋
转载
2023-08-12 21:20:43
282阅读
卷积神经网络 CNN 文章目录卷积神经网络 CNN一、概述二、卷积的概念三、CNN原理3.1 卷积层3.2 池化层3.3 完全连接层3.4 权值矩阵BP算法3.5 层的尺寸设置四、CNN简单使用五、总结 一、概述 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。
转载
2023-07-10 16:09:28
1435阅读
ConvNets
卷积神经网络的结构基于一个假设,即输入数据是图像,基于该假设,我们就向结构中添加了一些特有的性质。这些特有属性使得前向传播函数实现起来更高效,并且大幅度降低了网络中参数的数量。
转载
2023-07-31 16:58:42
910阅读
卷积神经网络一、卷积神经网络与BP网络(传统前馈神经网络)相比具有以下特点:(1)、采取局部连接(稀疏连接),减少了所需参数; (2)、可直接处理二维数据,故常被用于图片处理操作; (3)、具有三个基本层——卷积层、池化层、全连接层:卷积层CNN算法常用于图片处理,其中卷积层是通过多个卷积核对输入的图片像素矩阵进行局部连接,通过权值共享与卷积的方式进行图片的特征提取得到特征映射数据。(所以卷积核又
转载
2023-09-15 15:36:43
439阅读
卷积的概念
线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。具体地说一个滤波器就是一个n*n的矩阵,和对应的图像进行卷积,可以得到
转载
2023-10-08 09:30:58
142阅读
搭建卷积神经网络模型 目录搭建卷积神经网络模型一、卷积模块1.1 边界填充1.2单步卷积1.3 正向传播二、池化模块三、总结 在经历了前面多层神经网络的学习后,我们来到了卷积神经网络,我将吴恩达深度学习第四课第一周的课后作业分开两篇博客,本文首先是练习一下卷积神经网络底层的搭建。 在本文中,我们将实现以下功能:卷积模块使用0扩充边界(padding)卷积窗口(filter)正向卷积池化模块正向池
转载
2023-09-15 15:53:22
165阅读
(一)卷积神经网络卷积神经网络最早是由Lecun在1998年提出的。卷积神经网络通畅使用的三个基本概念为:1.局部视觉域;2.权值共享;3.池化操作。 在卷积神经网络中,局部接受域表明输入图像与隐藏神经元的连接方式。在图像处理操作中采用局部视觉域的原因是:图像中的像素并不是孤立存在的,每一个像素与它周围的像素都有着相互关联,而并不是与整幅图像的像素点相关,因此采用局部视觉接受域可以类似图
转载
2023-10-16 00:15:14
1095阅读
5 卷积神经网络卷积神经网络CNN,是一种具有局部连接、权重共享等特性的深层前馈神经网络。 目前,卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络结构上的局部连接、权重共享和汇聚的特性,使得卷积神经网络具有一定程度上的平移、缩放和旋转不变性。和前馈神经网络相比,卷积神经网络的参数更少。 卷积神经网络主要使用在图像分类、人脸识别、物体识
转载
2023-08-20 20:25:40
146阅读
卷积过程是卷积神经网络最主要的特征。然而卷积过程有比较多的细节,初学者常会有比较多的问题,这篇文章对卷积过程进行比较详细的解释。1.卷积运算首先我们需要知道什么是卷积计算,它其实是一种简单数学运算,有两个步骤:一个是矩阵内积乘法,另一个是将内积乘法的结果进行全加。 (1)矩阵内积乘法 矩阵的内积乘法非常简单,就是把两个相乘的矩阵,相同位置的元素进行乘法运算,这个时候会得到一个新的矩阵(在这里我们需
转载
2023-08-11 10:13:07
346阅读
一、卷积神经网络卷积神经网络包括:卷积层、激活函数、池化层、全连接层通常把神经网络的隐藏层分为 卷积层和池化层二、卷积层块一般包括:卷积层+激活函数+汇聚层(池化层,又叫下采样层)三、概念及作用1)卷积层(Convolutional layer)通过卷积操作(线性操作,即在原始图像上平移)对输入图像进行降维和特征提取如图所示,卷积层实际上,就是按照模板(卷积核)的样子扫描原始图像,图像的
转载
2023-08-26 12:55:16
554阅读