梯度下降法是一种求函数最小值的算法。在机器学习中,预测值和实际值之间的差称为误差。将所有数据点上的所有误差加在一起时称为成本。当然,我们希望最小化代表此成本的函数 - 成本函数。在机器学习中梯度下降是什么意思呢?通过使用称为反向传播的技术来训练神经网络。梯度下降是反向传播的一个非常重要的部分。梯度下降法是一种非常流行的方法来调整机器学习模型的参数,以达到最小的误差状态。机器学习算法是告诉机器学习数
转载
2024-03-26 16:00:50
130阅读
原文链接:http://ihoge.cn/2018/GradientDescent.html最近在看机器学习相关的基础算法原理,意外发现一个大神的分享网页,简洁并且语言精炼,思路很清楚,仔细研究会对算法原理有新的理解,另外还有代码分享,可以手码.引言李航老师在《统计学习方法》中将机器学习的三要素总结为:模型、策略和算法。其大致含义如下:模型:其实就是机器学习训练的过程中所要学习的条...
转载
2021-09-01 16:13:48
1075阅读
前面的文章讲了使用最小二乘法来求线性回归损失函数的最优解,最小二乘法为直接对梯度求导找出极值,为非迭代法;而本篇文章了使用一个新的方法来求损失函数的极值:梯度下降法(Gradient Descendent, GD),梯度下降法为最优化算法通常用于求解函数的极值,梯度下降法为迭代法,给定一个β在梯度下降最快方向调整β,经过N次迭代后找到极值,也就是局部最小值或全局最小值;
梯度下降法又分为批量梯
转载
2023-09-08 09:21:09
45阅读
机器学习10:如何理解随机梯度下降1.梯度下降法 理解随机梯度下降,首先要理解梯度下降法。 大多数机器学习或者深度学习算法都涉及某种形式的优化,优化指的是改变 x以最小化或最大化某个函数的任务, 我们通常以最小化 指代大多数最优化问题, 最大化可经由最小化算法最小化-来实现。&n
CS299课程的笔记为什么梯度方向下降最快方向导数定义:函数在某一特定方向上的
原创
2022-08-04 22:00:31
296阅读
首先是对感知器的简单回顾,假设现有的训练集为 D,共有 n 个训练数据,每个数据都有 m 个输入特征和一个输出标签。一个 epoch 就是遍历一次整个训练集,对于每一个训练数据,都计算其预测、计算误差、更新参数。 在一个 epoch 中,每次针对一个训练数据进行参数更新的方法,称为在线方法或者随机梯度下降;而在一个 epoch 中将参数在每个训练数据上需要更新的值记录下来,最后叠加在一起再对参数
转载
2024-03-07 10:05:55
190阅读
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。下面我们以线性回归算法来对三种梯度下降法进行比较。一般线性回归函数的假设函数为: 对应的损失函数为:&nb
转载
2024-04-03 20:27:51
78阅读
参考: https://yjango.gitbooks.io/superorganism/content/ti_du_xia_jiang_xun_lian_fa.htmlhttps://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650720663&idx=3&sn=d9f671f77be23a148d1830448154a
转载
2024-08-21 10:53:10
58阅读
6.梯度下降?①梯度下降是迭代法的一种,可以用于求解最小二乘问题;②在求解机器学习算法的模型参数,即无约束优化问题时,主要有梯度下降(Gradient Descent)和最小二乘法。③在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值;④如果需要求解损失函数的最大值,可以通过梯度上升法来迭代。梯度下降法和梯度上升法可相互转换;⑤在机器学习中,梯度下降法
转载
2024-08-21 10:48:56
89阅读
SGD(随机梯度下降)详解名词解释SGD vs BGD效率方面优化方面SGD优势SGD劣势 名词解释名词定义original-loss整个训练集上的lossminibatch-loss在一个mini batch上的lossBGD最原始的梯度下降算法,为了计算original-loss上的梯度,需要使用训练集全部数据SGD(近似)计算original-loss梯度时,只使用一个mini batch
转载
2024-05-27 21:20:27
48阅读
随机梯度下降法1. 概念 那个梯度值准确的求出来。 那么通过推导的这个公式可以看出来,要想求出这个准确的梯度来,在这个式子中每一项都要对所有的样本( 个)进行一下计算,前面是有一个求和计算的,那么这样的一个下降法通常又叫做批量梯度下降法(Batch Gradient Descent)。也就是说,每一次计算的过程都要将样本中所有的信息批量的进行计算,但是这显然就带来了一个问题,如果我们的 个样
转载
2024-05-08 18:52:07
251阅读
调节学习率 微分大小意味着离最小值的距离 c点和a点c的微分较大,但是离最低点更近。 那么微分大小意味着离最小值的距离仅在不跨元素时才成立 考虑到二次微分 左边 :走的稳定右边: 步伐小,散乱。但快 feature scaling 特征缩放 w2的变化对y影响大w1的变化对y(loss)影响小,微分
转载
2020-02-14 22:15:00
166阅读
2评论
梯度下降是不同于Normal Equals的方式;梯度本质是一个试错过程,不断的尝试一个个theta,寻找能够使的成本函数值最小的可能性。所谓下降是指不断的theat的取值是不断小步减少的;梯度,是指这个减少是逐渐,非线性的。 梯度下降有三种常见的函数:批量梯度下降,随机梯度下降以及最小化梯度下降。 先来看批量梯度下降,在Normal Equal里面我们接触了函数MSE,那么在梯度下降里面我们还是...
转载
2018-08-13 20:21:00
281阅读
2评论
梯度下降法又叫最速下降法,英文名为steepest descend method.估计搞研究的人应该经常听见这个算法吧,用来求解表达式最大或者最小值的,属于无约束优化问题。 首先我们应该清楚,一个多元函数的梯度方向是该函数
转载
2016-05-11 21:33:00
400阅读
2评论
梯度是一个矢量,有大小和方向。 梯度始终指向损失函数中增长最快的方向。梯度下降法算法会沿着负梯度的方向走一步,以便尽快降低损失。梯度下降法要使梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯 度)的反放向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函 数的局部极大值点;这个过程则被称为梯度上升法。梯度下降法算法用梯度乘以一个称为学习率(有时
转载
2024-05-28 09:46:51
109阅读
基本思想使用随机梯度下降直接解SVM的原始问题。摘要本文研究和分析了基于随机梯度下降的SVM优化算法,简单且高效。(Ο是渐进上界,Ω是渐进下界)本文证明为获得一定准确率精度ϵ所需的迭代次数满足O(1ϵ),且每一次迭代都只使用一个训练样本。相比之下,以前分析的SVM随机梯度下降次数满足Ω(1ϵ2)。以前设计的SVM中,迭代次数也与1λ线性相关 。对于线性核,pegasos算法的总运行时间是O(dϵλ
转载
2024-04-25 11:03:25
164阅读
如愚见指月,观指不观月。目录上节回顾——logistic回归模型和成本函数梯度下降梯度下降法的执行过程计算图logistic模型中的梯度下降算法上节回顾——logistic回归模型和成本函数是在条件下,的概率。。如果想要让我们的模型更加精确的话,就要让尽可能的接近。所以,我们定义了损失函数和成本函数,用于评估与的接近程度,以及模型的准确率。损失函数是对单个样本来说的。成本函数是对整个数据集来说的。
转载
2024-08-21 09:45:56
36阅读
上篇文章介绍了指数加权平均,这篇文章介绍在此基础上介绍一下动量梯度下降算法。所谓动量梯度下降算法,简言之就计算梯度的指数加权平均,然后使用这个梯度来更新权重,下面我们来详细解释这句话。我们在使用梯度下降算法更新权重时,希望损失函数能减小直到最优值。我们可以在一副等高线图中,画出损失函数随着迭代次数增加而减小的路径,即如下图所示:图中红点为最优点,蓝线为损失函数的减小路径,从图中左侧出发,逐渐靠近最
转载
2024-03-25 09:00:55
148阅读
参考资料: https://zhuanlan.zhihu.com/p/21387326?refer=intelligentunit在之前的博客 Coursera 机器学习(by Andrew Ng)课程学习笔记 Week 1——简单的线性回归模型和梯度下降我们已经介绍了损失函数和梯度下降的概念。这一部分我们会更加详细介绍这一部分。计算梯度对于一个函数来说,通常有两种计算梯度的方法:(1
转载
2024-04-01 21:47:05
83阅读
1 Logistic Regression¶
1.1 The data我们将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训例子,你有两个考试的申请人的分数和录取决定。为了做到这一点,我们将建立一个分类