# Android中的三维(3D Point)基础知识 ## 一、引言 在计算机图形学及应用开发中,三维是表示三维空间中位置的重要概念。在Android应用开发中,特别是在游戏、虚拟现实(VR)和增强现实(AR)等方面,理解和应用三维是非常重要的。本文将介绍三维的基本概念,并通过代码示例深入讨论如何在Android中创建和使用三维。 ## 二、三维的定义 一个三维通常用一个
原创 9月前
24阅读
 由于众多技术的进步,3D传感变得越来越精确和廉价。目前已有的不同类型的三维传感技术,包括激光雷达(LiDAR)、飞行时间(Time-of-Flight)和多视点立体(Multi-View Stereo)。尽管3D传感器仍然相对昂贵,并且需要专业知识才能操作,但正是微软Kinect的发布使得精确和廉价的3D传感成为现实。它的成功伴随着计算机视觉研究社区的许多新发展,这使得许多新的应用成为
转载 2023-11-28 15:38:00
73阅读
什么是3D云?云数据一般由激光雷达等3D扫描设备获取空间若干点的信息,包括XYZ位置信息、RGB颜色信息和强度信息等,是一种多维度的复杂数据集合。相比于2D图像来说,3D云数据具有很大优势,它可以提供丰富的几何、形状和尺度信息;并且不易受光照强度变化和其它物体遮挡等影响。因此,3D云能够很好地了解机器的周围环境。3D云语义分割3D云语义分割被用在自动驾驶、机器人等许多领域中,目前,已经
云数据结构 云数据结构非常简单,只有点的三维坐标信息和法线信息。下面是一个云表示的抽象类:class GPP_EXPORT IPointCloud { public: IPointCloud(){} virtual Int GetPointCount() const = 0; virtual Vector3 GetPoint
转载 2023-09-06 08:22:43
94阅读
逆向工程是一种产品设计再现的创新应用,可以对目标产品进行3D模型设计重构,并在此基础上进行改良设计。借助逆向工程,设计工程师可以快速高效实现产品创新。由浩辰CAD公司研发的浩辰3D制图软件提供了更强悍的逆向工程功能,可以直接读取、编辑云和网格数据,并将其转化成可用于工程制造的精确实体模型,实现复杂结构的逆向设计。 步骤一:数据导入在浩辰3D制图软件中,将导入的模型进行对齐坐标系,点击「
转载 2023-10-30 22:20:55
162阅读
中文摘要 近年来,三维场景重建与定位是计算机视觉领域中重要的研究方向。随着自动驾驶技术与工业机器人技术的不断发展,对于场景重建精度与定位准确度的要求也不断提高。如何利用各种传感器采集到的数据,完成对场景的精确重建与定位,是非常有价值和应用前景的研究方向。 目前这一领域中存在着许多挑战:在重建方面,使用传统方法对大场景一次性建图会产生漂移误差,同时效率较低,而采用分区域重建的方法又依赖于准确的融合技
 一、opencv宽高对应关系:Mat.rows = Mat.size().height = 高 Mat.cols = Mat.size().width = 宽 int sz_1[2] = { 200, 400 }; // {高,宽} {Mat.rows,Mat.cols} Mat m = cv::Mat(2, sz_1, CV_8UC1,Scalar::all(255)); or
转载 2024-04-10 13:06:58
208阅读
      大学的日子只剩下个多月,仿佛又经历了一次轮回——开始留恋大学的生活。所以选择了留在学校做毕设,过完大学最后放纵充实的个月。等毕业工作了,至少还能够对大学最后的日子有个自由的回忆。       毕设跟着以前实验室的老师,主要的内容是:对照片上的人物进行图像识别,然后
# Android三维云显示教程 ## 一、整体流程 首先,我们来看一下实现Android三维云显示的整体流程: ```mermaid journey title Android三维云显示流程 section 准备工作 开发者->小白: 告诉小白准备工作 section 导入模型 开发者->小白: 导入云模型 secti
原创 2024-03-26 06:18:49
239阅读
# 实现Android三维云显示教程 ## 摘要 作为一名经验丰富的开发者,我将教会你如何在Android应用中实现三维云显示。本教程将分为几个步骤,每个步骤都会有详细的指导和代码示例。让我们开始吧! ## 整体流程 下表展示了实现“Android三维云显示”的流程: | 步骤 | 描述 | | ---- | ---- | | 1 | 导入OpenGL ES库 | | 2 | 创建渲染
原创 2024-05-09 04:10:30
333阅读
 在三维绘图蓬勃发展的过程中,计算机公司推出了大量的三维绘图软件包。其中SGI公司推出的OpenGL,作为一个性能优越的图形应用程序设计界面(API)异军突起,取得了很大的成就。它以高性能的交互式三维图形建模能力和易于编程开发,得到了Microsoft、IBM、DEC、Sun、HP等大公司的认同。因此,OpenGL已经成为一种三维图形开发标准,是从事三维图形开发工作的必要工具。1、初始化OpenG
转载 2024-03-08 17:25:43
157阅读
三维计算视觉研究内容包括:  (1)三维匹配:两帧或者多帧云数据之间的匹配,因为激光扫描光束受物体遮挡的原因,不可能通过一次扫描完成对整个物体的三维云的获取。因此需要从不同的位置和角度对物体进行扫描。三维匹配的目的就是把相邻扫描的云数据拼接在一起。三维匹配重点关注匹配算法,常用的算法有最近迭代算法 ICP和各种全局匹配算法。       (2)多视图三维重建:
转载 2024-05-09 21:47:41
108阅读
标题:Voxelized GICP for Fast and Accurate 3D Point Cloud Registration作者:Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atsuhiko Banno代码:https://github.com/SMRT-AIST/fast_gicp.git本文仅做学术分享,如有侵权,请联系删除。欢迎各
OpenCV学习笔记(15)使用OpenGL显示双目视觉三维重构效果 2010年06月24日               上一篇笔记中使用Matlab初步显示了双目视觉重构出的环境三维效果图,不过并没有加上纹理信息。在OpenCV中文论坛里,大象的帖子(http://www.opencv.org.cn/forum/viewtopic.php?f
转载 2024-03-13 15:37:08
55阅读
# 使用Python绘制三维散点图和三维曲面 在数据科学和可视化领域,绘制三维图形十分重要。今天,我们将学习如何使用Python中的`matplotlib`和`numpy`库,绘制三维散点图并在其基础上构建一个三维曲面。这篇文章将带你逐步实现这一目标。 ## 流程步骤 以下是整个流程的步骤和所需的代码: | 步骤 | 描述
原创 2024-10-23 05:12:19
274阅读
PointNet网络 一、激光云数据在深度学习上的研究一直较为缓慢,其主要有以下几个特征:云数据具有无序性云数据点之间具有空间关系云数据具有空间转换不变性其中无序性表现在云数据是一个集合,对数据顺序不敏感,模型对数据的随机排列保持不变性;其中空间关系表现在并不是相互独立的,存在空间关系构成局部特征;其不变性表现在云数据所代表的目标对某些空间转换应该具有不变性。二、对云数据的传统处理
转载 2023-12-29 21:03:37
71阅读
目录1. 聚类简介 2. 数学基础2.1 谱定理与瑞利熵 2.2 概率论基础2.2.1 联合概率2.2.2 边缘分布2.2.3 条件概率2.3 图论2.3.1 有向图2.3.2 无向图 2.4 拉格朗日优化3 K-Means算法3.1 算法步骤3.2 K-Medoids3.3 K-Mean的缺陷4 高斯GMM模型4.1 概述5 Spectral Cluste
作者:西蒙·吉罗多链接:CGAL 5.4 - Manual: Surface Reconstruction from Point Cloudshttps://doc.cgal.org/latest/Manual/tuto_reconstruction.html目录2 我应该使用哪种算法?3 管道概览4 读取云数据5 云预处理5.1 异常值去除 
转载 2024-01-05 21:23:00
407阅读
一、关键,线,面       三维视觉应同时具备:关键、关键线以及关键面种算法,要从n信息中提取n - 1信息是简单的,但是n - 2信息会比n - 1信息要不稳定且复杂的多,其主要原因是因为降过大后,特征的定义很模糊,对于三维云而言,很难去描述什么是关键。二、云降       二图像中的Ha
3D云模型总结点云数据预处理 FAQ1. 云有哪些常用的数据集?2. 云中点的个数如何确定?3. 如何划分train/val/test ?4. 如何归一化?5. 如何shuffle?6. 数据增强(augmentation)Farthest Point Sampling (FPS)算法核心思想解析1. 逻辑描述2. 算法原理3. 算法分析PointNet++: classification
  • 1
  • 2
  • 3
  • 4
  • 5