将特定结构的数据转化为一种能被记录和还原的格式即存储  数据存储的六个关键因素:正确性、时间开销、空间开销、安全、开发成本和兼容性。我们不可能同时把所有要素都做到最好,所谓数据存储优化就是根据自己的使用场景去把其中的一项或者几项做到最好。  更宽泛的讲,存储不一定就是将数据存放在磁盘中,比如放到内存中、通过网络传输也算是存储的一种形式。或者我们也可以把这个过程叫做对象或者数据的序列化。对于大部
我说的大数据处理是指同时需要对数据进行检索查询,同时有高并发的增删改操作。记得以前在XX做电力时,几百万数据,那时一个检索查询可以让你等你分钟。现在我是想探讨下对大数据量的处理,那时我就在想例如腾讯,盛大,动辄数以亿计的帐号,怎么能这么快呢, 于是找到了互联网现在对数据处理的发展。 对于大数据处理,如果是互联网处理的话,一般分为下面阶段:第一阶段,所有数据都装入一个数据库,当数据量大了肯定
JavaJava语言的特点简单面向对象(OO)分布式(distributed)可靠(robust)安全(secure)平台无关可移植解释性高性能多线程动态 Java语言的特点简单Java省略了C++中一些难以理解的概念(这些概念带来的优点往往比缺点更多),包括运算符重载、多继承和扩展的自动类型转换。 另外,Java由于具备自动垃圾回收的机制(gc),所以不需要像C/C++程序员那样管理程序内存。
性能优化-数据准备:使用存储过程生成百万测试数据1 概述2 创建数据库3 建表4 创建存储过程4.1 创建存储过程-学生表4.1 创建存储过程-班级表4.1 创建存储过程-课程表4.1 创建存储过程-成绩表4.1 创建存储过程-给每个班级分配学生人数4.1 创建存储过程-给每个学生分配1个课程的默认100次历史成绩5 生成100万数据6 查询数据 1 概述   &n
转载 2024-02-23 11:07:22
100阅读
1. 数据太多。放在一个表肯定不行。比如月周期表。一个月1000万,一年就1.2亿,如此累计下去肯定不行的。所以都是基于一个周期数据一个表。甚至一个周期数据就要分几个分表。主要是考虑实际的数据量而定。当你创建一个新表时,可能这个表需要有索引,但是都要先取消索引,或者先建立表,导入数据后,再建立索引。必要时处理完,统计完后,就备份到磁带或者其他介质。然后清掉。从问题域来看,一个周期内的数据关联性最大
3. 开发规范与性能优化3.1键值设计1. key名设计(1)【建议】: 可读性和可管理性以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:idtrade:order:1(2)【建议】:简洁性保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视,例如:user:{uid}:friends:messages:{mid} 简化为 u:{uid}??m:{m
转载 2023-09-21 07:31:31
501阅读
mysql千万数据处理实践背景目的解决方案放弃方案采用方案方案细节1. 数据分片2. 线程池3. 数据结构选取4. 任务等待5. 批量插入 背景线上一张数据表(数据量2500W)因为前期设计问题,导致某些关联关系没有整理,需要从这张表中重新整理对应的映射关系以应对新的查询需求。 A 数据表(2500W)关联字段 a ,映射字段 b B 数据表关联表 (6000W) 关联字段 c , d C 映射
Python秒开100G数据是怎么办到的?在这个数据爆炸的时代,我们通常要对海量的数据进行分析,少则几十G,多则上百G,对于这样的数据我们打开都很困难,又该如何分析呢?通常都会采取下面几个方案:对数据抽样;使用分布式计算;使用强大的服务器。本文让我们来了解一个低成本又速度快的方法,使用一个强大的Python库-vaex来实现海量数据的读取和操作。Vaex是一个开源的DataFrame库,它可以对表
     大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯 这样的一些涉及到海量数据的公司经常会问到。     下面的方法是我对海量数据处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的
先了解下excel版本区别 excel2003excel2007及以上后缀.xls.xlsx结构二进制格式xml数据结构特点存储容量有限xml压缩,占用空间小,操作效率高 可以看到2007及以上版本为xml数据结构,对后续海量数据处理起到关键作用。apachePoi官方对excel2007使用xssf对象,可以分为三种模式:用户模式:有很多封装的方法,但非常耗内存事件模式:基于
转载 2024-07-12 15:12:02
61阅读
更新日志:(如果有更好的优化方案或者更高级的工具类:欢迎评论或者私信) * 1.response.reset();注释掉reset,否在会出现跨域错误。* 2.可导出多个单元、poi官方建议大数据量解决方案:SXSSFWorkbook。* 3.自定义下拉列表:对每个单元格自定义下拉列表。* 4.数据遍历方式换成数组(效率较高)、可提供模板下载、每个表格的大标题[2018-09-14]* 5.自定义
一.处理百万级以上的数据提高查询速度的方法:1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。 2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。 3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如: select id f
转载 2023-11-27 04:37:07
636阅读
# Java处理百万级数据 在现代科技发展的背景下,我们经常面临大规模数据处理的需求。无论是大型企业的数据分析,还是科学研究中的模拟实验,处理百万级数据已经成为一个常见的挑战。Java作为一种高性能、跨平台的编程语言,提供了一些强大的工具和技术来处理这些大数据集。本文将探讨Java如何处理百万级数据的一些常用方法,并提供相应的代码示例。 ## 1. 内存优化 处理大规模数据时,我们首先需要考
原创 2023-07-28 19:14:53
1020阅读
# Python百万数据处理 ## 概述 在当今数据爆炸的时代,处理大规模数据已经成为开发者的重要技能之一。本文将引导刚入行的小白开发者学习如何使用Python处理百万级别的数据。 ## 流程 下面是整个处理百万数据的流程,我们将一步步进行讲解。 表格形式如下: | 步骤 | 描述 | | --- | --- | | 第一步 | 数据采集 | | 第二步 | 数据清洗和预处理 | | 第三
原创 2024-01-04 03:21:56
205阅读
处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。 2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。 3.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,
1. 前言中因为我负责基本服务,我经常需要处理一些数据,但大部分时间我使用awk和java程序,但这一次有million-level数据需要处理,不能通过执行awk和匹配,然后我使用java进程,文件被分成8 - 8线程打开并发处理,但处理仍然非常缓慢,处理时间至少1天+,所以处理速度不能容忍这种处理速度,结果已经定性提高速度。时间是1个小时多一点,这一次是可以接受的,后续可以继续使用大数据的概念
处理百万条的数据库如何提高处理查询速度1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num is null可以在num上设置默认值0,确保表中num列没有null值,然后这样查询
转载 2024-04-05 22:08:18
72阅读
引言 在当今的数据驱动时代,实时数据处理变得越来越重要。Pandas作为Python中强大的数据分析库,提供了丰富的功能来处理和分析结构化数据。本文将从基础到高级逐步介绍Pandas在实时数据处理中的应用,涵盖常见问题、常见报错及解决方案,并通过代码案例进行详细解释。 一、Pandas简介 Pandas是一个开源的Python库,主要用于数据分析和操作。它提供了两种主要的数据结构:Series(
原创 精选 8月前
209阅读
引言 在当今的数据驱动时代,实时数据处理变得越来越重要。Pandas作为Python中强大的数据分析库,提供了丰富的功能来处理和分析结构化数据。本文将从基础到高级逐步介绍Pandas在实时数据处理中的
原创 3月前
63阅读
引言 在现代数据分析中,实时数据处理变得越来越重要。Pandas作为Python中最受欢迎的数据分析库之一,提供了强大的工具来处理和分析结构化数据。本文将深入探讨如何使用Pandas进行实时数据处理,并解决其中常见的问题、报错及避免或解决方法。 一、基础知识 1. 实时数据的概念 实时数据是指在短时间内不断更新的数据流。这些数据通常来自传感器、日志文件、API等来源。实时数据处理的目标是快速获取
原创 精选 8月前
220阅读
  • 1
  • 2
  • 3
  • 4
  • 5