泰坦尼克号数据可视化分析报告 1. 提出问题泰坦尼克号作为一部感人至深的电影流传至今,作为数据分析领域的一员,也站在数据分析的角度对其进行一些思考和分析,究竟什么样的人在泰坦尼克号更容易生还?2.理解数据2.1 采集数据从Kaggle泰坦尼克号项目界面下载数据:Kaggle泰坦尼克号项目2.2 导入数据 import 2.3 查看数据集信息 print 由上面信息可看出,数据
## 机器学习泰坦尼克号数据分析入门指南 在这篇文章中,我们将一起实现一个机器学习项目,基于泰坦尼克号乘客的数据来进行生存率预测。这是一个经典的机器学习案例,非常适合初学者入门。我们将逐步完成这个任务,从数据的加载到模型的评估,整个流程将以表格的形式进行总结。 ### 整体流程 以下是实现机器学习泰坦尼克号数据分析的整体流程: | 步骤 | 描述 | |------|------| | 1
原创 9月前
186阅读
# 教你实现“泰坦尼克号数据机器学习” 在这篇文章中,我将指导你完成一个简单的机器学习项目,通过“泰坦尼克号”数据集来预测乘客的生存情况。这份数据集是机器学习新手的经典案例,帮助你入门数据处理、特征工程、模型训练和评估。下面,我将带你了解整个流程,以及每一步所需的代码。 ## 整个流程概览 以下是实现“泰坦尼克号数据机器学习”的流程表: | 步骤 | 描述
原创 8月前
59阅读
案例:泰坦号数据分析背景:泰坦尼克号的沉没是历史上最臭名昭着的沉船之一。1912年4月15日,在首次航行期间,泰坦尼克号撞上冰山后沉没,2224名乘客和机组人员中有1502人遇难。这场轰动的悲剧震撼了国际社会,并导致了更好的船舶安全条例。 海难导致生命损失的原因之一是没有足够的救生艇给乘客和机组人员。虽然幸存下来的运气有一些因素,但一些人比其他人更有可能生存,比如妇女,儿童和上层阶级。数据集描述
转载 2023-08-13 15:31:06
848阅读
import pandas #ipython notebook titanic = pandas.read_csv("titanic_train.csv") titanic.head(5)titanic["Age"] = titanic["Age"].fillna(titanic["Age"].median()) #age将空值填充为平均值 (处理age) titanic.describe()
题目一:数据清洗及预处理一、首先导入读取csv的pandas包,然后读取训练数据集及预测数据集import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns #训练数据集 train = pd.read_csv("train.csv") #测试数据集 test = pd.re
作者:陈锴,中山大学,Datawhale成员全文如下:本文结合泰坦尼克号生存预测,从1.数据探索(数据可视化),2.数据预处理,3.模型训练,4.模型调参这四个步骤进行了完整的梳理:![]( process=image/format,png)1. 数据概述与可视化1.1 数据概述首先我们导入我们的训练数据和测试数据数据集包含train.csv和test.csv两个文件train_data = p
# Python泰坦尼克号数据分析实现指南 ## 1. 简介 在本文中,我们将介绍如何使用Python语言进行泰坦尼克号数据分析。泰坦尼克号是一艘著名的沉船事件,我们将使用相关的乘客数据进行分析。本文将逐步指导您完成整个数据分析过程。 ## 2. 数据准备 首先,我们需要获取泰坦尼克号乘客数据。您可以在Kaggle网站( ## 3. 导入所需的库 在开始分析之前,我们需要导入一些常用的Pyt
原创 2023-11-13 05:01:57
158阅读
机器学习步骤:(1)提出问题(2)理解数据(3)数据清洗(4)构建模型(5)模型评估(6)方案实施1. 提出问题本文通过使用Kaggle网站上的泰坦尼克生存数据信息,在Python中利用机器学习算法,来预测泰坦尼克号中不同乘客的存活率。2. 理解数据数据来源:Kaggle上面的泰坦尼克号项目 Titanic: Machine Learning from Disasterwww.kaggle.co
接触数据挖掘内容较少,加之本次写作业较为匆忙,只能借鉴大佬思路进行相应的探索,后续会合理安排工作与学习时间,挤出时间认真完成作业!!数据探索之前断断续续做过中文文本分类项目,通过朴素贝叶斯原理,使用多项式算法建立模型对商品进行打标签,才算是首次接触数据挖掘,通过中文文本分类,第一次了解过拟合、交叉验证、TF-IDF、词向量等等术语,不断地加深对数据挖掘的认知,而本次泰坦尼克-数据挖掘项目,算是另一
泰坦尼克号生存预测这是kaggle上面比较入门的一个比赛。今天让我们来看看怎么做吧。kaggle传送门。首先报名,下载数据集。数据载入及概述首先导入从Kaggle上面下载的数据集,在导入的过程中就需要先导入一些必备的包了。import numpy as np import pandas as pd # 接着导入我们的训练数据 filename = 'titanic/train.csv' # 这
hi everybody,这周开始了对随机森林算法的学习,kaggle网站上有一个关于泰坦尼克号幸存预测的案例很适合用随机森林算法来预测,所以我们本周的算法就以这个数据集开始讲解。定义问题本研究是利用泰坦尼克号乘客数据集,运用随机森林算法根据乘客的不同变量参数特征进行学习,最后得出预测是否幸存。本文运用的编程语言为 python所需要的包为:sklearn,numpy,matplotlib,sea
泰坦尼克号获救问题(线性回归 / 逻辑回归 / 随机森林 求解思路)一. 预处理 数据表格首先分析表格中的数据,可以看到 Age 列中的数据是有缺失的,因此,需要补齐所有空缺的Age数据,用中位数。再看Sex列中的性别字符串转换成 数字,便于计算。将所有 male替换为 0, female 替换为1。同理, Embarked 列也要转换成数字,由于该列中依然有缺失,需要填充,那就填充出现
文章目录泰坦尼克号旅客生存预测1. 数据集1.1 获取1.2 数据展示及主要字段说明2. 数据预处理2.1 读入数据2.2 查看数据摘要2.3 筛选提取字段2.4 存在的问题及解决方案2.5 找出有 null 值的字段2.6 填充 null 值2.7 转换编码2.8 删除 name 字段2.9 打乱数据顺序2.10 分离特征值和标签值2.11 特征值标准化处理2.12 完整的数据预处理函数3.
【目录】kaggle介绍项目练手:泰坦尼克号收获分享 一、kaggle介绍 kaggle是一个数据科学竞赛平台,创立于2010年,主要为开发商和数据科学家提供举办机器学习竞赛、托管数据库、编写和分享代码的平台。kaggle官方表示,该社区目前在全世界范围内已有超过80万注册用户。 以上是官方介绍,我们换个角度来理解kaggle:kaggle是为了解决什么问题而被创造出
转载 2023-11-04 13:12:48
294阅读
文章目录一、建模基本流程二、结构化数据建模流程2.1 泰塔尼克号数据2.2 数据处理2.3 建立模型2.4 训练模型2.5 评估模型2.6 模型预测27 保存模型 一、建模基本流程数据处理建立模型训练模型评估模型模型预测保存模型二、结构化数据建模流程数据文件:链接:https://pan.baidu.com/s/1H3QBVLPv4WeUnIYH92OKEA?pwd=wh77 提取码:wh77
Sklearn实现决策树详解 Sklearn实现了以下四种类型的树 1)tree.DecisionTreeClassifier([criterion, …]) 决策树分类器.2)tree.DecisionTreeRegressor([criterion, …]) 回归树.3)tree.ExtraTreeClassifier([criterion, …]) 一种非常随机的树分类器.4)tree.Ex
(一)步骤流程:#(一) 目标确定:根据已有数据预测未知旅客生死 # (二)数据准备:1 数据获取,载入训练集csv,测试集csv # (三)数据清洗:补齐或抛弃缺失值,数据类型变化(字符串转数字) # (四)数据重构:根据需要重新构造数据(重组数据,构建新特性) #(五)数据分析: 1 描述性分析,画图,直观分析 2 探索性分析, 机器学习模型 # (六)成果输出
一,分析背景和目的分析背景:在上一篇里做过泰坦尼克号项目的数据清洗,模型训练,预估,链接如下https://zhuanlan.zhihu.com/p/157763714本篇着重于该项目的可视化分析目的:什么样的人在泰坦尼克号事件中的存活率较高?二,分析维度 三,导入数据 # Step1:导入数据处理包 四,理解数据1)理解字段 2)查看信息 #查看数据类型的信息 fu
这是我做的第一个半完整的数据分析项目,里面包含数据获取,数据清洗,描述性统计,数据可视化,机器学习建模等内容。花了我两天时间,中间出了很多bug,而且原始数据也有问题,因此存在较多缺陷,还请各位大佬多多指教!目录: 1.数据获取 2.数据预处理 3.描述性统计 4.变量分布统计 5.探索变量间的关系 6.特征处理 7.机器学习建模 8.模型准确性评估第一步:数据获取 直接从互联网获取数据impor
转载 2023-12-28 10:01:12
320阅读
  • 1
  • 2
  • 3
  • 4
  • 5