文章目录第三章:神经网络3.1 数学模型3.2 激活函数3.3 代码实现3.4 学习容量和正则化3.5 生物神经科学基础 第三章:神经网络神经网络是对线性模型的升级,使之能对线性不可分的训练集达到好的分类效果,同时也是理解卷积神经网络的基础,其核心是引入非线性激活函数和多层结构。3.1 数学模型线性模型只能对线性可分的训练集达到较好的分类效果,那么怎么对其升级,使之能对线性不可分的训练集也达到好
1. 导入各种模块基本形式为:import 模块名from 某个文件 import 某个模块2. 导入数据(以两类分类问题为例,即numClass = 2)训练集数据data可以看到,data是一个四维的ndarray训练集的标签3. 将导入的数据转化我keras可以接受的数据格式keras要求的label格式应该为binary class matrices,所以,需要对输入的label数据进行转
转载 2023-09-19 22:39:58
232阅读
人脸检测及识别python实现系列(4)——卷积神经网络(CNN)入门      上篇博文我们准备好了2000张训练数据,接下来的几节我们将详细讲述如何利用这些数据训练我们的识别模型。前面说过,原博文给出的训练程序使用的是keras库,对我的机器来说就是tensorflow版的keras。训练程序建立了一个包含4个卷积层的神经网络(CNN),程序利用这个网络训练我的人
转载 2023-06-27 10:23:07
99阅读
前言在我们训练神经网络时,通常使用的优化算法就是梯度下降,在这篇文章中,我以卷积神经网络为例,来具体展示一下在Pytorch中如何使用梯度下降算法来进行卷积神经网络的参数优化。1.网络搭建我们先来构建一个简单的卷积网络。import torch import torch.nn as nn import torch.optim as optim class Conv_net(nn.Module):
我们使用华为云 ModelArts 轻松完成了滑动验证码缺口的识别。但是那种实现方案依赖于现有服务,是华为云提供的深度学习平台所搭建的识别模型,其实其内部是用的深度学习的某种目标检测算法实现的,如果利用平台的话,我们无需去申请 GPU、无需去了解其内部的基本原理究竟是怎么回事,它提供了一系列标注、训练、部署的流程。但用上述方法是有一定的弊端的,比如使用会一直收费,另外不好调优、不好更好地定制自己的
大家好,今天和各位分享一下如何使用 Tensorflow 构建 CNN卷积神经网络和 LSTM 循环神经网络相结合的混合神经网络模型,完成对多特征的时间序列预测。本文预测模型的主要结构由 CNN 和 LSTM 神经网络构成。气温的特征数据具有空间依赖性。本文选择通过在模型前端使用CNN卷积神经网络提取特征之间的空间关系。同时,气温数据又具有明显的时间依赖性,因此在卷积神经网络后添加 LSTM 长短
转载 2023-07-10 14:40:58
245阅读
2点赞
用tensorflow,pytorch这类深度学习库来写一个神经网络早就不稀奇了。可是,你知道怎么用python和numpy来优雅地搭一个神经网络嘛?现如今,有多种深度学习框架可供选择,他们带有自动微分、基于图的优化计算和硬件加速等各种重要特性。对人们而言,似乎享受这些重要特性带来的便利已经是理所当然的事儿了。但其实,瞧一瞧隐藏在这些特性下的东西,能更好的帮助你理解这些网络究竟是如何工作的。所以今
引言在本文中,我们将尝试使用 Keras 框架实现基本的 CNN 模型。卷积神经网络的好处在于它通过保留最大信息来减少或最小化图像的维度和参数,从而使训练过程变得更快并占用更少的计算能力。让我们开始吧!我们必须导入与 Keras 关联的某些库来实现 CNN 模型。#basic libraries import matplotlib.pyplot as plt from numpy import a
1. CNN卷积神经网络(CNN)是近年发展起来,并广泛应用于图像处理,NLP等领域的一 种多层神经网络。如图,传统的神经网络使用全连接的策略进行极端,在处理较大的数据(如图像)时会遇到问题:权值太多,计算量太大;需要大量样本进行训练。CNN通过局部感受野和权值共享减少了神经网络需要训练的参数个数。我们在观察一个图像的时候,不可能一眼看到图像的所有内容。这时候,CNN中隐藏层的每个神经元只和前一层
深度神经网络基础理解(pytorch)前言一、CNN是什么?二、CNN过程总结 前言随着社会的发展基于pytorch结构的深度神经网络越来越流行(分类问题,目标检测,人脸识别,目标追踪等等),现对CNN(卷积神经网络)以及基本定义与理解进行简单的论述以及针对Mnist数据分类问题代码实现与讲解,注意本文章使用pytorch框架。提示:以下是本篇文章正文内容,一、CNN是什么?CNN(Convol
涉及资源 1.官网DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ 3.函数搜索:https://pytorch.org/docs/stable/index.html系列学习笔记:Pytorch学习笔记(一)Pytorch学习笔记(二)Pytorch学习笔记(三)本周学习内容: pytorch实现CNN分类器,识别MNIST数据集 以CNN为例,实现GPU
cnn每一层会输出多个feature map, 每个Feature Map通过一种卷积滤波器提取输入的一种特征,每个feature map由多个神经元组成,假如某个feature map的shape是m*n, 则该feature map有m*n个神经元。对于卷积层会有kernel, 记录上一层的feature map与当前层的卷积核的权重,因此kernel的shape为(上一层feature ma
网上对时序问题的代码详解很少,这里自己整理对CNN和RNN用于时序问题的代码部分记录,便于深入理解代码每步的操作。 本文中涉及的代码:https://github.com/EavanLi/CNN-RNN-TSF-a-toy一、1D-CNN1. Conv1d的接口class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=
本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下一、CNN模型结构输入层:Mnist数据集(28*28)第一层卷积:感受视野5*5,步长为1,卷积核:32个第一层池化:池化视野2*2,步长为2第二层卷积:感受视野5*5,步长为1,卷积核:64个第二层池化:池化视野2*2,步长为2全连接层:设置1024个神经元输出层:0~9十个数字类
Mask RCNN是在Faster_RCNN上提出网络结构,主要用于目标检测和实例分割。主要思想是在Faster RCNN框架上扩展Mask分支进行像素分割。阅读的源码是matterport/Mask_RCNN,由python3、keras和tensorflow构建完整套代码。整个代码详解分为4部分,依次为:Basebone Network代码Region Propasal Network(R
文章目录时间序列表示方法一般过程RNNRNN原理1RNN原理2RNN layer使用pytorch实现nn.RNN__init__forwardSingle layer RNN2 layer RNNpytorch实现nn.RNNCell时间序列波形预测例子LSTMnn.LSTMnn.LSTMCellSingle layerTwo Layers 时间序列表示方法卷积神经网络一般都是二维的图像数据循
一、准备python环境以Windows平台为例:1.安装python3直接默认安装,并且添加到PATH。安装完毕后在命令行输入python回车查看是否安装成功。2.更换pip源在win+R运行输入%APPDATA%,点击确定,进入C:Users\用户名\AppData\Roaming文件夹,在该文件夹下新建文件夹pip,在pip下新建文本文件,在其中填入如下内容,然后将文件命名为pip,扩展名改
环境配置python3.8.5tensorflow2.4.1使用模型与数据集tensorflow中的keras做CNNmnist数据集(因为tensorflow自带了这个数据集,所以我直接使用了tensorflow自带的数据集并且下载到本地)数据集可以用show.py打开前几张图片只使用全连接层的神经网络这是一开始做的,因为不需要卷积层,只有全连接层来做数据的降维与分类,速度极快,每一层只需要不到
本文实例为大家分享了基于TensorFlow的CNN实现Mnist手写数字识别的具体代码,供大家参考,具体内容如下一、CNN模型结构输入层:Mnist数据集(28*28)第一层卷积:感受视野5*5,步长为1,卷积核:32个第一层池化:池化视野2*2,步长为2第二层卷积:感受视野5*5,步长为1,卷积核:64个第二层池化:池化视野2*2,步长为2全连接层:设置1024个神经元输出层:0~9十个数字类
 卷积神经网络卷积神经网络(Convolutional Neural Network)简称CNNCNN是所有深度学习课程、书籍必教的模型,CNN在影像识别方面的为例特别强大,许多影像识别的模型也都是以CNN的架构为基础去做延伸。另外值得一提的是CNN模型也是少数参考人的大脑视觉组织来建立的深度学习模型,学会CNN之后,对于学习其他深度学习的模型也很有帮助,本文主要讲述了CNN的原理以及
  • 1
  • 2
  • 3
  • 4
  • 5