# 如何在R语言中实现互信息变量选择
## 1. 流程概述
首先,让我们来看一下整个流程的步骤:
| 步骤 | 描述 |
|------|------------------------------|
| 1 | 导入数据集 |
| 2 | 计算变量之间的互信息 |
| 3
原创
2024-06-07 06:18:28
233阅读
信息熵的相关知识,考虑用信息熵来计算互信息和条件互信息。
原创
2021-06-09 17:09:29
1961阅读
一、算法思想1、特征选择特征选择是去除无关紧要或庸余的特征,仍然还保留其他原始特征,从而获得特征子集,从而以最小的性能损失更好地描述给出的问题。特征选择方法可以分为三个系列:过滤式选择、包裹式选择和嵌入式选择的方法 。本文介绍的互信息(mutual information)即为过滤式的特征选择算法。关于过滤式的特征算法系列,可参考我的其他文章。特征选择之卡方检验特征选择之Fisher Score2
转载
2023-08-27 16:15:57
1039阅读
文章目录SIFT角点检测1 知识点2 实验部分检测兴趣点匹配描述子3 遇到的问题及解决方法 SIFT角点检测1 知识点SIFT特征包括兴趣点检测器和描述子。SIFT算法的特点:SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性,可用于三维视角和噪声的可靠匹配;独特性(Distinctiveness)好,信息量丰富,适用于在海量特
转载
2024-07-12 07:17:36
32阅读
和分解的边缘分布的乘积的相似程度。互信息(Mutual Information)是度量两个事件集合之间的相关性(mutual dependence)。互信息最常用的单位是bit。1 互信息定义1.1 原始定义和,其联合概率分布函数为,而边缘概率分布函数分别为和,其互信息可以定义为: 在连续随机变量的情形
转载
2023-12-11 07:57:19
274阅读
最近看一些文档,看见了互信息的使用,第一次接触互信息,感觉和专业有些相关,就把它记录下来,下面是一片不错的文章。 互信息(Mutual Information)是度量两个事件集合之间的相关性(mutual dependence)。平均互信息量定义:互信息量I(xi;yj)在联合概率空间P(XY)中的统计平均值。 平均互信息I(X;Y)克服了互信息量I(xi;yj)的随机性,成为
转载
2023-11-11 13:22:52
120阅读
仅做记录,侵删。我们在这里首先会对数据的多余特征和无关特征做可视化,以便我们更好的理解特征选择的动机,接着分别用过滤法,包裹法,和嵌入法这些特征选择的方法做出代码展示,同时观察测试集上泛化误差来体现出特征选择的优越性,最后我们试一试将其结合起来会不会取得更好的效果。 我们上一篇的所用的糖尿病数据有一个遗留问题,那就是性别到底与糖尿病的恶化程度有没有关系?换而言之,它到底是不是一个无关特征
转载
2024-07-31 10:39:07
68阅读
我们现在处于一个数据驱动的时代,但并不是所有的数据都是有意义的。只有有效的数据才能带给我们"信息",无效的数据并不能带给我们"信息"。如果我们在做一件事情之前,可以通过各种数据得到这件事情所有相关信息,那么我们就可以最初最完美的决策,使利益最大化。基于熵的特征选择方法就是选择一个能提供给类别尽可能多"信息"的特征子集,从而得到关于类别更多的"信息",进而为分类提供帮助。如何衡量数据所携带信息的多少
转载
2023-09-15 21:22:45
150阅读
在机器学习和特征工程领域,特征选择是提升模型性能的重要环节。互信息(Mutual Information, MI)作为一种衡量随机变量间依赖关系的统计量,在特征选择中尤为重要。本文将详细记录“Python互信息特征选择”的过程,涵盖协议背景、抓包方法、报文结构、交互过程、字段解析及异常检测等内容。
---
在数据分析和机器学习中,互信息是一种用于评估两个变量之间独立性程度的指标。其值越高,表明
1.互信息互信息是信息论中的一个基本概念,通经常使用于描写叙述两个系统间的统计相关性。或者是一个系统中所包括还有一个系统中信息的多少。引入互信息对图像进行配准是由于:不须要假定两幅图像灰度的相应关系。不须要对图像进行切割。可是这对Ct-MR配准、或者CT-PET配准是可行的。对于CT-US配准是不可行的。在概率论中,两个随机变量A和B。他们的边缘概率分布为p_A (a)和p_B (b),他们的联合
参考【信息论基础】第2章离散信息的度量—自信息和互信息_哔哩哔哩_bilibili目录一、自信息◼ 自信息例题◼ 联合自信息 例题◼ 条件自信息例题 例题2◼ 自信息,联合自信息和条件自信息之间的关系二、互信息◼ 互信息互信息的性质例题◼ 条件互信息例题一、自信息◼ 自信息自信息主要描述:随机事件中,某一个事件自身的属性。比如:从1到10中随机抽取一个数字,可能的结果有10个,
转载
2023-12-14 13:37:41
222阅读
# 互信息法特征选择
在机器学习和数据分析中,特征选择是一个重要的步骤。它有助于提高模型的性能和可解释性。互信息法作为一种有效的特征选择方法,能够帮助我们选择与目标变量相关性高的特征,降低噪声,提高模型的准确性。本文将介绍互信息法的基本原理,并通过Python代码示例展示如何实现特征选择。
## 互信息法简介
互信息(Mutual Information, MI)是用来衡量两个随机变量之间依
声学模型的训练一般是基于极大似然准则(ML),然而ML只考虑正确路径的优化训练,没有考虑降低其他路径的分数,因此识别效果不佳。区分性训练目标是提高正确路径得分的同时降低其他路径的得分,加大这些路径间的差异,因此识别效果更好。1 互信息 区分性训练的其中一个常用准则叫MMI准则,即最大化互信息准则。那么什么是互信息呢?我们先来看看互信息的根源。源头:信息量:一个事件发生的概率越
转载
2023-10-11 21:19:48
500阅读
目录1.算法仿真效果2.MATLAB核心程序3.算法涉及理论知识概要1.算法仿真效果matlab2022a仿真结果如下: 2.MATLAB核心程序......................................................
for x = wzx1-rfield+wzx2:step:wzx1+rfield+wzx2 % 浮动图像相对参考图像平移
Farewell to Mutual Information: Variational Distillation for Cross-Modal Person Re-Identification摘要:信息瓶颈 (IB) 通过在最小化冗余的同时保留与预测标签相关的所有信息,为表示学习提供了信息论原理。尽管 IB 原理已应用于广泛的应用,但它的优化仍然是一个具有挑战性的问题,严重依赖于互信息的准确估计
转载
2024-08-08 16:40:21
171阅读
互信息的原理、计算和应用Mutual Information 互信息Background熵 Entropy交叉熵 Cross Entropy条件熵 Conditional EntropyKL-散度 KL-divergence定义计算方法Variational approach^[3]^Mutual Information Neural Estimation, MINE^[5]^DEEP INFO
转载
2023-12-22 21:10:02
366阅读
简单介绍: 基于互信息的图像配准算法以其较高的配准精度和广泛的适用性而成为图像配准领域研究的热点之中的一个。而基于互信息的医学图像配准方法被觉得是最好的配准方法之中的一个。基于此。本文将介绍简单的基于互信息的图像配准算法。预备知识熵 熵(entropy)是信息论中的重要概念,用来描写叙述系统
转载
2023-10-30 14:46:53
234阅读
# 使用 Python 计算互信息:新手指南
互信息(Mutual Information)是信息论中的一个重要概念,用于量化两个随机变量之间的依赖关系。在数据科学和机器学习中,互信息可以用来评估变量之间的相关性,是特征选择的一个有效工具。本篇文章将带你一步一步实现互信息的计算。
## 流程概述
在开始之前,我们可以把实现互信息的步骤拆分为以下几个简单的部分:
| 步骤 | 描述
原创
2024-08-07 07:30:45
145阅读
扣丁学堂Python开发socket实现简单通信功能实例2018-08-21 14:12:38747浏览今天扣丁学堂Python培训老师给大家结合实例介绍一下关于socket实现的简单通信功能,首先套接字(socket)是计算机网络数据结构,在任何类型的通信开始之前,网络应用程序必须创建套接字,可以将其比作电话的插孔,没有它将无法进行通信,下面我们一起来看下一下是如何实现的。常用的地址家族AF_U
转载
2023-12-18 13:12:09
43阅读
标准化互信息NMI (Normalized Mutual Information)常用在聚类评估中。标准化互信息NMI计算步骤Python 实现代码:''' 利用Python实现NMI计算'''
import math
import numpy as np
from sklearn import metrics
def NMI(A,B):
# 样本点数
total = len(A
转载
2023-07-06 10:25:58
552阅读