在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明。本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布
GMM,即高斯混合模型(Gaussian Mixture Model),简单地讲,就是将多个高斯模型混合起来,作为一个新的模型,这样就可以综合运用多模型的表达能力。EM,指的是均值最大化算法(expectation-maximization),它是一种估计模型参数的策略,在 GMM 这类算法中应用广泛,因此,有时候人们又喜欢把 GMM 这类可以用 EM 算法求解的模型称为 EM 算法家族。这篇文章
一、gmappinggmaping主要是采用一个粒子滤波的方式来实现。主要框架如下:(1) 数据输入 在ROS GMapping包中,获取激光和里程计数据传入openslam GMapping包中,为新一时刻的建图做准备。 (2)运动模型 根据t-1时刻的粒子位姿以及里程计数据,预测t时刻的粒子位姿,在初始值的基础上增加高斯采样的noisypoint。 (3
转载 2023-07-24 17:49:37
149阅读
1、引言E,expectation(期望);M,maximization(极大化); EM算法,又称期望极大算法EM已知的是观察数据,未知的是隐含数据模型参数,在E步,我们所做的事情是固定模型参数的值,优化隐含数据的分布,而在M步,我们所做的事情是固定隐含数据分布,优化模型参数的值。为什么使用EM 算法EM算法使用启发式的迭代方法,先固定模型参数的值,猜想模型的隐含数据;然后极大化观测数据
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering。Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GM...
转载 2015-06-20 17:12:00
79阅读
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GM...
转载 2015-06-09 16:16:00
154阅读
我讲EM算法的大概流程主要三部分:需要的预备知识、EM算法详解EM算法的改进。一、EM算法的预备知识1、极大似然估计(1)举例说明:经典问题——学生身高问题  我们需要调查我们学校的男生女生的身高分布。 假设你在校园里随便找了100个男生100个女生。他们共200个人。将他们按照性别划分为两组,然后先统计抽样得到的100个男生的身高。假设他们的身高是服从高斯分布的。
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GM...
转载 2015-02-01 20:47:00
38阅读
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明。本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GMM模型:每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个“Co
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GMM模型:每一个 GMM 由 K 个 Gaussian 分布组成,每一个 Gaussian 称为一个“
转载 2015-02-09 20:57:00
72阅读
2评论
转载 2014-10-27 09:41:00
80阅读
2评论
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GM...
转载 2014-07-17 11:10:00
78阅读
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GM...
转载 2014-10-05 13:28:00
25阅读
2评论
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GM...
转载 2014-07-06 21:35:00
79阅读
2评论
基于EMGMM算法的目标轨迹跟踪异常行为识别matlab仿真3.仿真结果A10-19
参考blog and 视频 高斯混合模型 EM 算法Python 实现 如何通俗理解EM算法 机器学习-白板推导系列(十一)-高斯混合模型GMM EM算法的定义 最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大 ...
转载 2021-10-07 17:05:00
519阅读
2评论
最近在学习Andrew Ng 教授的机器学习课件。第7第8章,主要讲解EM算法GMM。论文讲解浅显易懂,但有些内容不完整。比如,没有写出来协方差Σ的求解过程,没有具体的实例应用。本文在原论文的基础上,增加了协方差的求解过程,使用GMM进行聚类的Python代码。1。Jensen不等式 回顾优化理论的一些概念。设f是定义域为实数的函数,如果对于所有实数x,f′′≥0,那么f是凸函数。当x是向
假设有一堆数据点,它是由两个线性模型产生的。公式如下:模型参数为a,b,n:a为线性权值或斜率,b为常数偏置量,n为误差或者噪声。一方面,假如我们被告知这两个模型的参数,则我们可以计算出损失。对于第i个数据点,第k个模型会预测它的结果则,与真实结果的差或者损失记为:目标是最小化这个误差。但是仍然不知道具体哪些数据由对应的哪个模型产生的(缺失的信息)。 另一方面,假设我们被告知这些数据对应
EM是一种解决存在隐含变量优化问题的有效方法。EM的意思是“Expectation Maximization”最大期望,与最大似然估计MLE的关系,EM是解决(不完全数据的)MLE问题的迭代算法 iterative algorithm,是一种在概率模型中寻找参数最大似然估计或者最大后验估计的算法, 其中概率模型依赖于无法观测的隐藏变量。EM算法流程:    
写在前面 EM(Expectation Maximization 期望最大化)算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计。其每次迭代由E、M两步构成。下面首先给出一般EM算法的求解过程(怎么做),然后结合一个例子来理解,然后讲为什么这么求解,即推导,最后讲述EM算法在高斯混合模型中的应用及小结。 EM算法 P(Y|θ)=∑zP(Z|θ)P(Y|Z,θ
  • 1
  • 2
  • 3
  • 4
  • 5