原理PNN,全称为Product-based Neural Network,认为在embedding输入到MLP之后学习的交叉特征表达并不充分,提出了一种product layer的思想,既基于乘法的运算来体现体征交叉的DNN网络结构,如下图:按照论文的思路,我们也从上往下来看这个网络结构:
输出层
输出层很简单,将上一层的网络输出通过一个全链接层,经过sigmoid函数转
探索更快的循环神经网络语言模型(Faster RNNLM):HS/NCE 工具包项目地址:https://gitcode.com/yandex/faster-rnnlm在这个开源项目中,我们的目标是创建一个能够处理大数据集(数十亿个单词)和大规模词汇表(数十万个词)的循环神经网络语言模型(RNNLM)实现。它特别强调在实际的自动语音识别(ASR)和机器翻译(MT)问题中的应用。项目技术分析该项目支
转载
2024-08-05 09:24:41
49阅读
Recurrent Neural Network相比于一般的神经网络,比如MLP(Full-connection Neural Network),RNN是一种用于处理序列数据的神经网络,它能处理序列变化的数据。比如一个单词在上下文中的会有的不同含义。它能很好地处理这类问题。RNN简介
Naive RNN
x为当前的输入状态h为接收的上一节点的输入数据y为当前节点状
转载
2024-04-15 15:01:09
35阅读
目录RNN为什么会出现RNNRNN模型架构多输入单输出单输入多输出多输入多输出梯度消失和梯度爆炸LSTM为什么会出现LSTM呢?LSTM模型结构本文介绍RNN模型和LSTM模型。RNN为什么会出现RNN在传统的深度神经网络模型中,我们的输入信息是没有顺序的,比如,NLP领域中,我们输入单词经常使用embedding,将词汇映射为词向量,然后输入到神经网络。但是这种输入方式会有一些问题,比如,"我
转载
2023-07-30 23:43:27
92阅读
所谓的语言模型,就是为了判断某个句子是不是人话,句子S是由多个词语wi构成的式子展开后,每一个因数P(条件概
原创
2022-12-14 16:25:14
1304阅读
如果我可以把今世的记忆带到以后,我会告诉我下一世的继任者去学数学。但是他可能又是一个不愿意学习的小傻瓜,或许三年级的时候还是会考各种0分。是呀,0分也是回忆,那时怎么会晓得走到现在,今后又晓得会去往何处。但是…,谁又会到全局最优解呢?我在这里,我不知道人生接下来会给我怎样的惊吓和惊喜,我现在处在的地方可能就是局部最优解吧!一、深度学习和机器学习的区别数据相关性: 深度学习与传统机器学习最重要的
神经网络语言模型1.NNLM的原理1.1 语言模型假设S表示某个有意义的句子,由一串特定顺序排列的词组成,n是句子的长度。目的:计算S在文本中(语料库)出现的可能性P(S)。1.2 神经网络语言模型直接从语言模型出发,将模型最优化过程转化为求词向量表示的过程.2. NNLM的网络结构2.1 NNLM的结构图NNLM网络结构包括输入层、投影层,隐藏层和输出层2.2 NNLM的计算过程根据前面的n-1
转载
2023-08-11 13:50:40
170阅读
一、lstm 这个链接讲lstm,非常详细!https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21 Sigmoid 层输出 0 到 1 之间的数值,描述每个部分有多少量可以通过。0 代
在自然语言处理的相关问题中,如何表示句子是建模分析的关键。与传统的图像、音频等天然可转化为计算机编码的元素不同,自然语言需要经过复杂编码才能被计算机识别。并且,这种编码是机械式的简单排列,设计初衷是为了解决自然语言的存储问题,编码本身不带有任何语言层面的信息。因此,直接使用自然语言的编码对文字进行转换而后建模是不可靠的,过程中丢失了太多的信息。语言模型正是解决了这样的问题。语言模型有很多种,计算机
转载
2024-05-07 19:21:07
58阅读
RNNLM,鉴于RNN天生的结构就存在有长期依赖,特别适合于序列的数据,解决了NNLM的不能获得长期依赖的问题(窗口固定导致),RNNLM还能通过BiRNN获得任意上下文的依赖。下面我们学习。本文仅仅学习理论知识,操作实践留给后面的博文。一:RNNLM是一个根据上下文,预测下一个词语概率的模型。这个模型更加
原创
2022-12-14 16:25:15
481阅读
一、RNN RNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息,允许信息持久化。由于其特殊的网络模型结构解决了信息保存的问题。所以RNN对处理时间序列和语言文本序列问题有独特的优势。 标准的RNN模型如下图所示: 
转载
2024-08-09 00:01:25
96阅读
系列前言 參考文献: RNNLM - Recurrent Neural Network Language Modeling Toolkit(点此阅读)Recurrent neural network based language model(点此阅读)EXTENSIONS OF RECURRENT
转载
2017-06-06 11:33:00
97阅读
2评论
目录1. 使用Numpy实现SRN 2. 在1的基础上,增加激活函数tanh 3. 分别使用nn.RNNCell、nn.RNN实现SRN5. 实现“Character-Level Language Models”源代码(必做)7. “编码器-解码器”的简单实现(必做)简单循环网络 ( Simple Recurrent Network ,
转载
2024-04-03 09:41:57
138阅读
来源:轩辕重出武圣人@大模型与小场景恶意行为者或高级持续性威胁(APT)对LLM(语言模型)进行未经授权的访问和泄露。当具有高价值知识产权的LLM模型被泄露、物理盗窃、复制或提取权重和参数以创建功能等效的模型时,就会发生这种情况。LLM模型盗窃的影响可能包括经济和品牌声誉损失、竞争优势受到侵蚀,以及未经授权使用模型或未经授权访问模型中包含的敏感信息。随着语言模型变得越来越强大和普及,LLM模型盗窃
原创
2023-09-29 13:22:54
787阅读
有这么一句话,那就是AI大模型分两种,一种是大模型;另一种是华为大模型。 如果从技术角度来分析,华为的技术不
原创
2023-11-29 10:47:38
2245阅读
点赞
# 实现NLP与CV大模型的流程指南
在当今的科技领域,NLP(自然语言处理)和CV(计算机视觉)大模型成为了热门话题。这两种技术结合在一起,可以为我们带来更强大的应用能力,例如图像语义理解和多模态搜索等。本文将为刚入行的小白开发者提供一个清晰的实现流程,以及每一步的代码示例和解释。
## 流程概述
以下是实现NLP与CV大模型的步骤概述:
| 步骤 | 描述 |
|------|----
原创
2024-08-16 06:09:34
905阅读
大模型训练方法:1. MoEOutrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.motivation现在的模型越来越大,训练样本越来越多,每个样本都需要经过模型的全部计算,这就导致了训练成本的平方级增长。为了解决这个问题,即将大模型拆分成多个小模型,对于一个样本来说,无需经过所有
转载
2023-11-26 11:04:57
1196阅读
点赞
Gartner 将生成式 AI 列为 2022 年五大影响力技术之一,MIT 科技评论也将 AI 合成数据列为 2022 年十大突破性技术之一,甚至将 Generative AI 称为是 AI 领域过去十年最具前景的进展。未来,兼具大模型和多模态模型的 AIGC 模型有望成为新的技术平台。近来,腾讯发布的混元 AI 万亿大模型登顶权威中文测评基准 CLUE 榜并超越人类水平。混元 AI 大模型采用
转载
2024-02-07 23:18:38
193阅读
开源案例地址:https://github.com/PaddlePaddle/ERNIE 其他的框架也会集成相关的大模型一、介绍二、大模型技术概述算法数据算力 大模型成为新方向 NLP大模型突破 价值,降本(数据,算力)增效 通用性底座 少数据,少算力,时间短 理解和生成的能力提升 文图生成 原理介绍 大模型技术发展 全局信息和高并发性 预训练模型三剑客 预训练 超大规模模型 小样本性能提升 通用
转载
2024-05-21 14:13:02
112阅读
分布式训练系统包括多个组成部分,如AI集群架构、通信机制、并行技术等。基于这些内容,我们可以设计出不同的大模型算法。下面我们简单讲述下大模型的发展脉络,大模型的结构以及SOTA大模型算法。大模型发展脉络随着2017年Transformer结构的提出,使得深度学习模型参数突破了1亿,Transformer 取代RNN、CNN进入大模型时代。2018年谷歌发布了BERT,便一举击败 11 个 NLP
转载
2024-03-31 00:26:19
629阅读