基因组规模上的聚合数据类型的相似性网络融合(本文是对similarity network fusion for aggregating data types on a genomic scale 整体文章的翻译,对于后面理论公式部分可以参照该朋友的笔记)摘要近期的技术已经使收集不同类型的全基因组数据十分划算,结合这些数据去创建一个给定的疾病或生物过程的一个全面视图的计算方法是有必要的。相似网络融合
转载
2024-06-18 05:53:42
154阅读
R语言|12. 森林图-1: 多因素Cox回归模型森林图 (基于forestplot包)本期开始介绍Cox回归模型可视化。 之前学习过的的临床回归模型可视化方法主要是森林图和列线图 (Nomogram)。 计划是介绍一下单因素、多因素、亚组分析、其他类型森林图绘制;列线图部分介绍下基本的变量筛选方法、绘制过程、验证方法(ROC/DCA/校准图/分组比较等)、网页版列线图。本期介绍for
因为R的rmda包做不了COX回归临床决策曲线,很多朋友都是通过ggdca包来绘制COX回归临床决策曲线,最近很多粉丝使用ggdca包来绘制COX回归临床决策曲线出现问题过来问我,我绘制的时候没发现什么问题,所以也回答不了,但是我看了一些别的博主说是因为ggdca和survival包冲突,不能从R下载ggdca包,要从作者主页下载才可以,大家可以试一下。 好了,废话不多说,今天介绍R的dcu
转载
2023-06-25 10:50:27
497阅读
Cox比例风险模型(cox proportional-hazards model),简称Cox模型是由英国统计学家D.R.Cox(1972)年提出的一种半参数回归模型。该模型以生存结局和生存时间为应变量,可同时分析众多因素对生存期的影响,能分析带有截尾生存时间的资料,且不要求估计资料的生存分布类型Cox模型的基本假设为:在任意一个时间点,两组人群发生时间的风险比例是恒定的;或者说其危险曲线应该是成
转载
2023-08-27 19:34:52
816阅读
# R语言cox回归预测代码实现
## 简介
本文将介绍如何使用R语言实现Cox回归模型进行预测。Cox回归是一种用于生存分析的统计模型,用于研究影响时间到达某一事件的因素。在本文中,我们将介绍整个实现过程,并提供相应的代码示例。
## 流程概述
下表展示了实现Cox回归预测代码的整个流程。
| 步骤 | 描述 |
|---|---|
| 步骤1 | 数据准备 |
| 步骤2 | 模型拟合
原创
2023-11-14 11:20:13
340阅读
回归是用已知的数据集来预测另一个数据集,如保险精算师也许想在已知人们吸烟习惯的基础上预测其寿命。回归模型的输出是数字。 1、基准模型 如果我们要在不使用其他任何信息的情况下,尽可能做出接近事实的预测,那么平均输出作为结果是我们可以做的最好预测。在保险精算师的例子中,我们可以完全忽略一个人的健康记录并且预测其寿命等于人类平均寿命。 在讨论如何做出最好的合理预测之前,假如我们有一组虚构的保险统计数据
转载
2023-08-03 22:07:18
143阅读
基于Logistic回归的列线图1. 引用R包1 #install.packages("rms")2 library(rms) #引用rms包2. 读取文件1 setwd("C:\Users\000\Desktop\09_Nomogram") #设置工作目录2 rt 3 head(rt) #查看数据集rt▲ 在该数据集中,主要包含了年龄(Age),性别(Gender),BMI值,教育水平(Educ
转载
2023-09-14 13:26:51
221阅读
在用多元线性回归模型进行统计推断之前,我们需要知道该模型的基础假设。假设我们有n个因变量Y及自变量X1,X2,...,Xk的值,我们想推断多元回归方程Yi= b0 + b1X1i + b2X2i + ... + bkXki +εi。为了从多元线性回归模型中得出有效的推论,我们需要进行以下六个假设,这些假设是经典的多元线性回归模型有效的前提:1、因变量Y和自变量X1,X2,...,Xk之间的关系是线
转载
2024-04-25 09:00:20
111阅读
生存分析 三大块内容:1,描述性的生存率、中位生存期、生存曲线等,常用Kaplan-meier法2,比较分析两组的生存曲线是否有差别,log-rank检验(单个因素)3,cox比例风险回归类似logistic回归,多个变量对Y的影响,得到一个概率值,只不过加了时间多花点时间聊聊cox的感受 首先理解一个概念风险函数(hazard function)h(t)=f(t)/S(t)
转载
2024-05-13 10:02:34
50阅读
#简单线性回归:
##常用绘图:
fit<-lm(weight~height,data=women)
summary(fit)
plot(women$height,women$weight,xlab="Height (in inches)",ylab="Weight (in pounds)")
abline(fit)
fit2<-lm(mpg~wt+I(wt^2),data
转载
2024-01-21 08:08:49
131阅读
我们既往已经在文章《手把手教你使用R语言制作临床决策曲线》介绍了怎么使用rmda包制作了临床决策曲线,但是rmda包只能制作logistic回归模型的临床决策曲线,原来制作COX回归模型的stdca包R上下载不到。有粉丝留言向我推荐了ggDCA包,今天来演示一下怎么使用ggDCA包制作COX回归模型临床决策曲线。 ggDCA包由我们R语言大神,南方医科大学的博导Y叔制作,使用ggDCA包可以制作l
转载
2023-07-31 10:49:03
282阅读
比例风险回归模型(Proportional hazards model),又称为Cox模型(一种半参数模型),模型用于描述不随时间变化的多个特征对于在某一时刻死亡率的影响,Cox模型是生存分析中的一个常用模型;首先考虑Cox模型的产生动机,假如我们现在要研究一个人从出生开始,到时刻死亡的概率为多大,直观来看:一方面,受到时间推移影响,一个健康的人,随着年龄增大,死亡的概率也会逐渐增大;另一方面,生
转载
2023-11-12 08:05:08
661阅读
# R语言 Cox回归分析预测值实现教程
## 介绍
在这篇文章中,我将指导你如何使用R语言进行Cox回归分析的预测值计算。作为一名经验丰富的开发者,我将帮助你了解整个流程,并提供每一个步骤所需的代码和注释。
## 流程
首先让我们来看一下整个流程的步骤:
```mermaid
stateDiagram
[*] --> 开始
开始 --> 数据准备
数据准备 -->
原创
2024-07-07 03:36:19
98阅读
今天要给大家分享的文章是Cone EB, Marchese M, Paciotti M, Nguyen DD, Nabi J, Cole AP, Molina G, Molina RL, Minami CA, Mucci LA, Kibel AS, Trinh QD. Assessment of Time-to-Treatment Initiation and Survival in a Coho
转载
2024-08-22 09:56:07
56阅读
0X01 前言变量之间关系可以分为两类:函数关系:反映了事务之间某种确定性关系相关关系:两个变量之间存在某种依存关系,但二者并不是一一对应的;反映了事务间不完全确定关系;相关系数(r)可以衡量这种相关关系。r的取值范围是[-1,1],r=1表示完全正相关!r=-1表示完全负相关!r=0表示完全不相关。为什么要对相关系数进行显著性检验?1)实际上完全没有关系的变量,在利用样本数据进行计算时也可能得到
转载
2023-11-08 19:42:15
179阅读
# 用R语言进行Cox回归预测
Cox回归是一种用于生存分析的统计模型,用于研究影响事件发生时间的因素。在R语言中,我们可以利用`survival`包来实现Cox回归分析。下面将通过一个代码示例来展示如何使用R语言进行Cox回归预测。
## 数据准备
首先,我们需要准备一些生存分析的数据。这里我们使用`lung`数据集作为示例数据。`lung`数据集包含了用于研究肺癌患者生存时间的数据。
原创
2024-06-12 06:04:06
46阅读
Lasso 是一种估计稀疏线性模型的方法.由于它倾向具有少量参数值的情况,对于给定解决方案是相关情况下,有效的减少了变量数量。 因此,Lasso及其变种是压缩感知(压缩采样)的基础。在约束条件下,它可以回复一组非零精确的权重系数(参考下文中的 CompressIve sensing(压缩感知:重建医学图像通过lasso L1))。用数学形式表达,Lasso 包含一个使用 先验
转载
2024-05-11 08:56:14
563阅读
各位芝士好友,今天我们来聊一聊lasso回归算法。与预后有关的文章,传统的做法一般会选择多变量cox回归,高级做法自然就是我们今天的lasso分析。 首先我们先来几篇文献,看一下lasso最近发的两篇文章,如下:
&nbs
转载
2024-02-05 16:01:55
344阅读
# R语言Cox回归模型构建及验证
## 引言
在生存分析领域,Cox回归模型是一种重要的统计工具。它可以用于预测个体在给定时间点发生事件的风险。R语言作为一种强大的数据分析工具,提供了丰富的包和函数来构建和验证Cox回归模型。本文将介绍如何使用R语言构建和验证Cox回归模型,并提供相应的代码示例。
## Cox回归模型简介
Cox回归模型是一种半参数模型,它可以考虑多个预测因素对个体生存时间
原创
2024-01-10 04:44:19
1004阅读
大名鼎鼎的生存分析来咯!今天我就不叭叭叭了,咱们直接开始冲!(字有点多,希望大家不要嫌弃!)提前说一句,我们今天介绍的K-M曲线主要用于比较不同组别生存曲线之间的差异,如果你想评估不同变量对生存时间的影响,建议使用Cox比例风险回归模型生存分析是什么看下面这张图!漂亮不啦!今天咱们就一起来看看,如何才能得到它!在临床研究中,我们常常关注一些重要的结局事件,比如死亡、疾病复发、症状消失、疾病痊愈等。