1 图像色彩空间转换常见的色彩空间有HSV、RGB和YCrCb三种: RGB的色彩空间是设备独立的,不受设备不同的影响,取值范围在0-255。HSV色彩空间对计算机友好,H取值0-180,SV取值0-255。YCrCb色彩空间,Y表示信息,CrCb可以被压缩。 图像从一个色彩空间之间可以变换,但是可能存在如下问题:是否可以从一个色彩空间转换到另一个色彩空间是否存在信息传递和损失这一过程是否可逆Op
使用OpenCV基于特定的色彩范围进行图像分割操作 一、遍历图像实现色彩掩码本节我们实现这样一个算法,我们指定某种颜色和一个阈值,根据输入图片生成一张掩码,标记符合的像素(和指定颜色的差异在阈值容忍内)。源代码如下,我们使用一个class完成这个目标,其指定了两种构建函数,并通过逐像素扫描的形式生成掩码(process成员函数)。另外,本class做了仿
转载 2024-06-12 05:39:04
176阅读
前言还记得这个图吗?前阵子有篇文章《【综合练习】C++OpenCV实战---获取数量》里面中我们利用学到了一些OpenCV的基本知识进行了数量的提取。当时算是完成了,可以看看文章中的实现思路里面用到了距离变换,连通区域计算,还是归一化等一些API,比较烦所,其中里面一个最关键的问题是通过图像二值化后进行形态学操作,需要反复不停的测试找到一个合适的点才能把最左侧的两个枣区分开,上一章中我们学习了In
在本教程中,我们将了解计算机视觉中经常使用的色彩空间,并将其用于基于颜色的分割。我们还将用C ++和Python分享演示代码。 RGB色彩空间 RGB颜色空间具有以下属性 1. 它是一种加色空间,其中颜色通过红色,绿色和蓝色值的线性组合获得。 2. 三个通道通过照射到表面的光量相关联。 让我们将这两个图像分成R,G和B分量并观察它们以更深入地了解色彩空间。 图1:RGB颜色空间的不同通道:蓝(B
OpenCV中的图像处理 —— 图像阈值+图像平滑+形态转换 目录OpenCV中的图像处理 —— 图像阈值+图像平滑+形态转换1. 图像阈值1.1 简单阈值1.2 自适应阈值1.3 Otsu的二值化2. 图像平滑2.1 2D卷积(图像过滤)2.2 图像平滑(图像模糊)3. 形态转换3.1 侵蚀与膨胀3.2 开运算与闭运算3.3 顶帽与黑帽3.4 结构元素 1. 图像阈值关于图像阈值主要涉及到两个函
一、BGR颜色空间在opencv中,硬件所使用的颜色顺序为BGR,而非RGB,虽然排序有所不同,但是在进行图像操作的时候会有很大的区别,BGR颜色空间分别对应蓝、绿、红;这三种颜色的排列组合可以组成人眼所看到的所有颜色,如图2.1: 二、HSV颜色空间HSV分别对应色度、饱和度、亮度,HSV颜色空间数据分明,适合计算机处理数据,HSV是一种比较直观的颜色模型,所以在许多图像编辑工具中应用
机器视觉之OpenCV教程图像容器Mat类基础一(二) 一、Mat像素点的存储方法色彩空间是指我们通过组合颜色分量来对各种颜色编码 灰度图像: 从黑到白 ,逐渐过渡 , 划分成若干灰度级别彩色图像RGB模型: rgb是最常用的颜色模型 , 人类就是这样感知 光线的 , 在OpenCV中通道顺序是(blue 、 green 、 red)。彩色图像HSV和 HLS模型:是更贴近自然的颜色
彩色模型数字图像处理中常用的采用模型是RGB(红,绿,蓝)模型和HSV(色调,饱和度,亮度),RGB广泛应用于彩色监视器和彩色视频摄像机,我们平时的图片一般都是RGB模型。而HSV模型更符合人描述和解释颜色的方式,HSV的彩色描述对人来说是自然且非常直观的。HSV模型HSV模型中颜色的参数分别是:色调(H:hue),饱和度(S:saturation),亮度(V:value)。由A. R. Smit
转载 2024-03-19 09:11:46
111阅读
  在本教程中,我们将学习Computer Vision中使用的流行色彩空间,并将其用于基于颜色的分割。 1975年,匈牙利专利HU170062引入了一种难题,在43,252,003,274,489,856,000(43亿亿)种可能性中,只有一种正确的解决方案。到2009年1月,这项被称为“魔方”的发明席卷全球,销量超过3.5亿。 因此,有位同学又建立基于计
这篇文章和大家一起来解读下opencv关于阈值分析这块的知识点,希望能够加深大家对其的理解~图像阈值⛳️ 使用固定阈值、自适应阈值和Otsu阈值法”二值化”图像⛳️ OpenCV函数:cv2.threshold(), cv2.adaptiveThreshold()简单阈值当像素值高于阈值时,我们给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(可能是黑色)。这个函数就是 cv2.
彩色模型数字图像处理中常用的采用模型是RGB(红,绿,蓝)模型和HSV(色调,饱和度,亮度),RGB广泛应用于彩色监视器和彩色视频摄像机,我们平时的图片一般都是RGB模型。而HSV模型更符合人描述和解释颜色的方式,HSV的彩色描述对人来说是自然且非常直观的。 RGB就是指Red,Green和Blue,一副图像由这三个channel(通道)构成; Gray就是只有灰度值一个channel; H
重要的函数:HSV颜色图像这个模型中颜色的参数分别是:色调(H),饱和度(S),明度(V)色调H:用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,紫色为300°饱和度S:饱和度S表示颜色接近光谱色的程度。一种颜色,可以看成是某种光谱色与白色混合的结果。其中光谱色所占的比例愈大,颜色接近光谱色的
HSV颜色模型HSV(Hue, Saturation, Value)是根据颜色的直观特性由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)。、这个模型中颜色的参数分别是:色调(H),饱和度(S),亮度(V)。 色调H:用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补
前言:本专栏主要结合OpenCV4(C++版本),来实现一些基本的图像处理操作、经典的机器学习算法(比如K-Means、KNN、SVM、决策树、贝叶斯分类器等),以及常用的深度学习算法。 文章目录一、颜色空间二、RGB颜色空间三、HSI颜色空间四、HSV颜色空间五、HSL颜色空间六、Lab颜色空间七、灰度颜色空间八、颜色空间转换实战 一、颜色空间颜色空间又称彩色模型,再数字图像处理中:• RGB
文章目录一篇文章搞懂OpenCV之图像特征纹理特征形状特征哈里斯角检测Shi-Tomasi角点检测尺度不变特征变换算法 一篇文章搞懂OpenCV之图像特征图像特征即图像中独特的,易于跟踪和比较的特定模板或特定结构,例如我们肉眼可见的颜色、形状、轮廓以及亮度等等这些都可以认为是图像特征。 图像特征主要有图像的颜色特征、纹理特征、形状特征和空间关系特征。颜色特征(全局特征):描述了图像或图像区域所对
  邀请朋友在公众号上分享了一篇云台摄像头跟踪的教程。看了教程,跟着做了摄像头部分的功能,发现说的比较简洁,来具体分析一下。   这个颜色检测是在HSV颜色空间下进行的。首先把红色跟踪过程封装成函数,单独建个color_trace.py文件,代码如下:1 import cv2 2 import numpy as np 3 import imutils 4 5 def color_trac
转载 2023-07-16 19:13:08
295阅读
OpenCV颜色识别一般要以下步骤: 1 颜色空间转换,将BGR转换为HSV,用色调区分颜色 2 按照阈值滤出所识别的颜色 3 消除噪点,平滑边界 3 提取连续域,提取要识别的颜色1 HSV H:色调,用角度度量,范围0°到360°,从红色开始逆时针方向计算。红色为0°,红绿蓝间隔120°,互补色差180°。 S:饱和度,范围0到1,代表光谱色占颜色比例。0时颜色只有灰度,1时颜色为纯光谱色 V:
提醒:addWeighted()中,alpha,beta,gamma和不一定为1 system()函数:color是颜色属性,由两个十六进制数字指定 – 第一个为背景,第二个则为前景。每个数字可以为以下任何值之一: 0 = 黑色 8 = 灰色 1 = 蓝色 9 = 淡蓝色 2 = 绿色 A = 淡绿色 3 = 湖蓝色 B = 淡浅绿色 4 = 红色 C = 淡红色 5 = 紫色 D
转载 2024-07-18 12:42:37
57阅读
目的:使用OpenCV 中的函数cv::threshold实现阈值操作理论:阈值? 1) 最简单的分割方法 2) 应用实例:从图像中分割出我们要分析的对象区域。这种分离基于对象的像素和背景像素之间的强度的变化实现。 3) 为了区分我们感兴趣的像素(which will eventually be rejected),我们将用每一个像素的值和threshold比较(依据要解决的问题确定)。 4) 一
opencv的色彩空间RGB和BGR最常见的色彩空间就是RGB,人眼也是基于RGB的色彩空间去分辨颜色的!opencv默认的使用的时BGR,BGR和RGB的色彩空间的区别在于图片在色彩通道上的排列顺序不同! 显示图片的时候需要注意适配图片的色彩空间的显示环境的色彩空间。比如传入的图片时BGR色彩空间,实现环境时RBG空间,就会出现颜色混乱的情况。HSV,HSL,和YUVHSVopencv
  • 1
  • 2
  • 3
  • 4
  • 5