如果我们通过 Raft 算法实现了 KV存储,虽然领导者模型简化了算法实现和共识协商,但写请求只能限制在领导者节点上处理,导致了集群的接入性能约等于单机,那么随着业务发展,集群的性能可能就扛不住了,会造成系统过载和服务不可用。这时我们就要通过分集群,突破单集群的性能限制了。常用的哈希算法是通过求模取余的方法,获得存储位置。但哈希算法存在明显的缺点:当需要变更集群数时(比如从 2 个集群扩展为 3
转载
2024-07-26 14:13:47
63阅读
redis cluster有些全局配置如节点地址、主节点所负责哈希槽、主从关系等需要各节点保持一致,redis cluster只保证配置最终一致性。 它用以下两种措施来保证配置最终一致性: (1)每个节点都有EpochConfig值,用来标识该节点当前哈希槽配置(即负责哪些哈希槽
转载
2023-05-25 16:34:08
153阅读
像Memcache以及其它一些内存K/V数据库一样,Redis本身不提供分布式支持,所以在部署多台Redis服务器时,就需要解决如何把数据分散到各个服务器的问题,并且在服务器数量变化时,能做到最大程度的不令数据重新分布。 通常使用的分布式方法是根据所要存储数据的键的hash值与服务器数量N,按 hash % N 取模的算法来将数据分布到各个服务器。该算法的优点是足够简单,而且数据分布均匀。但是一
转载
2023-08-22 19:53:22
138阅读
目录1、redis cluster介绍2、最老土的hash算法和弊端(大量缓存重建)3、一致性hash算法(自动缓存迁移)+虚拟节点(自动负载均衡)不用遍历 --》 hash算法: 缓存位置= hash(key)%n新增/减少 节点 --》缓存位置失效--》hash环hash环 节点少--》数据倾斜--》添加虚拟节
转载
2023-09-19 16:38:45
69阅读
学完前面几讲后,有些同学可能有这样的疑问:如果我们通过 Raft 算法实现了 KV 存储,虽然领导者模型简化了算法实现和共识协商,但写请求只能限制在领导者节点上处理,导致了集群的接入性能约等于单机,那么随着业务发展,集群的性能可能就扛不住了,会造成系统过载和服务不可用,这时该怎么办呢?其实这是一个非常常见的问题。在我看来,这时我们就要通过分集群,突破单集群的性能限制了。说到这儿,有同学可能会说了,分集群还不简单吗?加个 Proxy 层,由 Proxy 层处理来自客户端的读写请求,接收到读写请求
原创
2022-03-22 14:50:52
214阅读
一致性哈希算法目前在缓存中用到的越来越广泛,比如说:redis1应用场景:
假设目前有多台redis服务器,需要放到redis中的key值有多个,如何能让这些key值均匀的分布到这些redis服务器中,已达到充分利用redis服务器的目的,这就是一致性哈希出现的历史背景。
2一致性哈希原理:
在移除或者添加一个缓存的时候,需要尽可能小的改变已存在的key的映射关系。
2.1哈希
转载
2023-06-13 11:24:16
139阅读
# 一致性哈希与Redis的应用
一致性哈希是一种特殊的哈希算法,广泛应用于分布式系统中,尤其是在缓存技术中,如Redis。通过减少节点变动对系统的影响,一致性哈希确保了系统的高可用性和高性能。本文将探讨一致性哈希的基本原理以及怎样将其应用于Redis中,并提供相关代码示例。
## 一致性哈希的基本原理
传统哈希方法在节点发生变化时,会导致大量数据的重新分布。为了解决这一问题,一致性哈希引入
一、Redis哈希槽1、哈希槽介绍Redis Cluster在设计中没有使用一致性哈希(Consistency Hashing),而是使用数据分片引入哈希槽(hash slot)来实现;一个 Redis Cluster包含16384(0~16383)个哈希槽(补充:为什么redis集群的最大槽数是16384个?),存储在Redis Cluster中的所有键都会被映射到这些slot中,集群中的每个键
转载
2023-09-29 11:08:53
143阅读
文章目录引出一致性哈希步骤参考资料 引出一致性哈希算法(Consistent Hashing Algorithm)是一种分布式算法,常用于负载均衡。随着业务的扩展,流量的剧增,单体项目逐渐划分为分布式系统。对于经常使用的数据,我们可以使用Redis作为缓存机制,减少数据层的压力。因此,重构后的系统架构如下图所示: 优化最简单的策略就是,把常用的数据保存到Redis中,为了实现高可用使用了3台Re
转载
2023-07-28 22:47:25
48阅读
## 一.节点取余根据redis的键或者ID,再根据节点数量进行取余。key:value如下name:1 zhangsna:18:北京对name:1 进行hash操作,得出来得值是2423423452,用这个值除3,余1则放到1号节点中进行存储,余2则放到2号节点存储。## 二.一致性hash一致性哈希分区(Distributed Hash Table) 实现思路是为系统中每个节点分配一个toke
转载
2024-02-26 19:42:58
39阅读
一、Hash算法引入--分布式缓存有一个电商平台,需要使用Redis存储商品的图片资源,key为图片名称,value为图片所在服务器的路径。利用随机分配的规则进行分库。总量3000w,以每台服务器存500w的数量,部署12台缓存服务器,并且进行主从复制,架构图如下图:1.Hash算法优化目的是为了每张图片在进行分库时都可以得到特定的服务器。我们共有六台主服务器,计算的公式为:hash(milk.p
转载
2023-06-13 12:45:38
159阅读
一致性哈希一般使用在有均衡分配需求上。解决类似于在一个服务器集群之中,只有其中某几台服务器接受了大量的请求,而剩下的服务器接受的请求寥寥无几的情况。一致性哈希可以将所有请求大致均匀的分配给所有的服务器,可以解决某几个单独服务器由于请求过多导致的响应变慢的情况。一致性哈希的核心设计 将服务器(或者线程等各种需要分配的
转载
2023-05-25 14:31:11
162阅读
redis学习(八)集群Redis Cluster是redis的分布式解决方案,采用cluster架构能打倒负载均衡的目的。数据分布数据分布理论分布式数据库首先要解决把整个数据集按照分区规则映射到多个节点的问题,即把数据集划分到多个节点上,每个节点负责整体数据的一个子集。重点是数据分区规则graph TB
item1(全量规则)-->item2(分区规则)
subgraph 分布式存储数据分
转载
2023-08-08 11:32:27
109阅读
docker进阶(redis主从集群,一致性hash算法)redis主从集群,一致性哈希算法哈希取余分区举例,我们要存储2亿条数据,也就是2亿个k.v。这时候我们单机不行,必须要进行分布式多级,假设我们有3台机器构成一个集群,用户每次读写操作都是根据公式hash(key)%N(N为机器的太熟),计算出哈希值,用来决定数据映射到哪一个节点上。优点:简单粗暴,直接有效,只需要预估好数据,规划好节点;例
转载
2023-08-09 21:52:57
88阅读
在了解一致性哈希算法之前,最好先了解一下缓存中的一个应用场景,了解了这个应用场景之后,再来理解一致性哈希算法,就容易多了,也更能体现出一致性哈希算法的优点,那么,我们先来描述一下这个经典的分布式缓存的应用场景。场景描述假设,我们有三台缓存服务器,用于缓存图片,我们为这三台缓存
原创
2022-02-21 17:33:56
249阅读
Cassandra,memcached,redis等分布式系统中,使用一致性哈希算法来保证数据的一致性。在redis中,为了在server node增加或减少时,尽量均匀的将缓存分布到多个server node上...
原创
2021-08-13 14:22:35
328阅读
1.说明 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。 一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用。 2.性能判断
转载
2018-07-29 23:46:00
88阅读
2评论
一直性Hash算法在很多场景下都有应用,尤其是在分布式缓存系统中,经常用其来进行缓存的访问的负载均衡,比如:redis等<k,v>非关系数据库作为缓存系统。我们首先来看一下采用取模方式进行缓存的问题。 一致性Hash算法的使用场景 假设我们的将10台redis部署为我们的缓存系统,存储<k,v>数据
转载
2020-10-31 18:31:00
109阅读
2评论
一致性哈希算法是分布式系统中常用的算法。比如,一个分布式的存储系统,要将数据存储到具体的节点上,如果采用普通的hash方法,将数据映射到具体的节点上,如key%N,key是数据的key,N是机器节点数,如果有一个机器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。 因此,引入了一致性哈希算法:
转载
精选
2015-05-09 14:11:53
623阅读
一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用。 一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:1、
转载
2017-08-04 23:38:57
473阅读