EM 算法是一种迭代算法,1977 年由 Dempster 等人总结提出,用于含隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计。EM 算法的每次迭代由两步组成:E 步,求期望(expectation); M 步,求极大(maximization)。所以这一算法称为期望极大算法(expectation maximization algorithm),简称 E
在开始讲解之前,我要先给看这篇文章的你道个歉,因为《2012.李航.统计学习方法.pdf》中该节的推导部分还有些内容没有理解透彻,不过我会把我理解的全部写出来,而没理解的也会尽可能的把现有的想法汇总,欢迎你和我一起思考,如果你知道为什么的话,还请在评论区留言,对此,不胜感激。         当然,若你对EM算法都一知
      与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取。而且我们认为在给定后,满足多值高斯分布,即。由此可以得到联合分布。      整个模型
# EM混合高斯模型的实现 ## 引言 EM算法是一种常用的参数估计方法,广泛应用于机器学习和数据挖掘领域。其中,EM混合高斯模型EM算法的一种特例,用于对数据进行聚类和模式识别。本文将介绍如何使用Python实现EM混合高斯模型,并逐步引导初学者完成整个过程。 ## 总体流程 以下是整个实现过程的步骤概览: | 步骤 | 描述 | |---|---| | 1. 数据准备 | 读取数据集,
原创 2023-09-03 08:32:33
75阅读
1、高斯混合模型(GMM)为什么会出现:k-means算法的缺陷      某些点的归属簇比其他点的归属簇更加明确,比如中间的两个簇似乎有一小块区域重合,因此对重合部分的点将被分配到哪个簇不是很有信心,而且k-means模型本身没有度量簇的分配概率或不确定性的方法。  理解k-means模型的一种方法是:它在每个簇的中心放置了一个圆圈(在更高维空间中是一个超空间),圆圈半径根
基础:EM算法和高斯混合模型EM算法EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计。1、EM算法EM算法的具体流程如下:  输入:观测变量数据Y,隐变量数据Z,联合分布P(Y, Z|θ),条件分布P(Z|Y, θ)  输出:模型参数θ  1)选择参数θ的初始值θ(0),开始迭代  2)E步:记θ(i)次迭代参数为θ的估计值,在第i+1次迭代的E步,计算(
__GMM__(Gaussian Mixture Model, 高斯混合模型)是指该算法由多个高斯模型线性叠加混合而成。每个高斯模型称之为component。__GMM算法__描述的是数据的本身存在的一种分布,即样本特征属性的分布,和预测值Y无关。显然GMM算法是无监督的算法,常用于聚类应用中,component的个数就可以认为是类别的数量。回到昨天说的例子:随机选择1000名用户,测量用户的身高
EM算法EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计。每一次迭代由两步组成:E步,求期望(expectation);M步,求极大(maximazation)。不断循环直到算法收敛,最后得出参数的估计。之所以要搞得这么麻烦,就是因为有隐变量(latent variable)这个东西的存在,隐变量是无法观测的,这就造成了我们的观测值和想要预测的参数值之间的差距。如果所有的变量都是
 介绍摘自李航《统计学习方法》EM算法EM算法是一种迭代算法,1977年由Dempster等人总结提出,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望(expectation);M步,求极大(maximization)。所以这一算法称为期望极大算法(expectation maximizatio
高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物, 将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。 对图像背景建立高斯模型的原理及过程: 图像灰度直方图反映的是图像中某个灰度值出现的频次, 也可以以为是图像灰度概率密度的估计。         如果图像所包含的目标区域和背景区域相差比较大,且背景区域和目标区域在灰度上有一定
EM是一种解决存在隐含变量优化问题的有效方法。EM的意思是“Expectation Maximization”最大期望,与最大似然估计MLE的关系,EM是解决(不完全数据的)MLE问题的迭代算法 iterative algorithm,是一种在概率模型中寻找参数最大似然估计或者最大后验估计的算法, 其中概率模型依赖于无法观测的隐藏变量。EM算法流程:    
高斯混合模型如果有c个高斯分布,并且这k个个高斯分布的选择都符合多项式分布,那么有下面的公式那么样本x 是一个服从多元高斯分布的随机试验中产生的抽样那么可以写出关于样本值(第i个样本)的概率密度函数,假设一共c个类别那么我们可以定义m个观测样本的对数似然函数对数复合函数求导公式代入上面的值进一步可以写成下面的式子由于对第k个正态分布的均值求偏导,因此除第k个正态分布外,其他分部不包含第k个正态分布
用极大似然来求解参数, 求导很有技巧,之前跟之前LDA相似, 还得用拉格朗日乘子求条件极值
时序分析 22高斯混合模型 (下)接上…    接下来,使用sklearn的GMM模型来做拟合,首先应用一个成分,等价于用一个正态分布来拟合数据。def make_gmm(n_components, max_iter=150, random_state=RANDOM_STATE): """fn: create gmm object""" mo
最近在看李航的《统计学习方法》一书,关于EM算法部分收集了些资料进行了学习,做了些混合高斯的模拟,下面分三个部分介绍下相关内容:1)EM算法原理,2)混合高斯推导,3)相关代码和结果一、EM算法原理EM算法推导中一个重要的概念是Jensen不等式。其表述为:如果为凸函数(),则有,当且仅当的时候不等式两边等号才成立。如果概率模型只针对观测样本,那么根据的观测值,可以通过极大似然或贝叶斯估计法估计其
EM算法有很多的应用:最广泛的就是GMM混合高斯模型、聚类、HMM等等.The EM Algorithm高斯混合模型(Mixtures of Gaussians)和EM算法EM算法求最大似然函数估计值的一般步骤:(1)写出似然函数;(2)对似然函数取对数,并整理;(3)求导数,令导数为0,得到似然方程;(4)解似然方程,得到的参数即为所求.期望最大化算法(EM算法):优点:1、 简单稳定;2、 通
EM(Expectation-Maximization)算法是一种迭代式方法,主要应用于包含隐藏变量(latent variable)的参数估计,在无监督学习中有着广泛的应用,EM算法迭代包含两步:利用估计的参数值来求对数似然期望(expectation)。通过最大化对数似然期望来更新参数。上述是EM算法的两个基本迭代部分,在实际应用中EM算法更多的看作是一种算法思想,而不是特定的算
看理论之前先来【举个例子】: 对于一个未知参数的模型,我们观测他的输出,得到下图这样的直方图:我们先假设它是由两个高斯分布混合叠加而成的,那么我们该怎么去得到这两个高斯分布的参数呢? EM算法!!1. 高斯混合模型假设观测数据 y1,y2,...,yN 是由高斯混合模型生成的。 P(y|θ)=∑k=1Kαkθ(y|θk) 其中, θ={α1,α2,...,αk;θ1,θ2,...,θk}
  目录 1.EM算法 2、高斯混合模型(GMM) 3.GMM和k-means   1.EM算法 具体流程如下:   输入:观测变量数据Y,隐变量数据Z,联合分布P(Y, Z|θ),条件分布P(Z|Y, θ)   输出:模型参数θ   1)选择参数θ的初始值θ(0),开始迭代   2)E步: 记θ(i)次迭代参数为θ的估计值,在
这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。       与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取。
  • 1
  • 2
  • 3
  • 4
  • 5