完整的工作代码可在github.com/lilianweng/stock-rnn找到。如果你不知道什么是循环神经网络(RNN)或长短期记忆网络(LSTM)单元互联网上也有很多类似教程,比如:· 使用Tensorflow实现RNN-LSTM的noob指南· TensorFlow R
一、图解RNN神经网络注意点:rnn网络权重矩阵h是自带激活函数的默认tanh参数表如下:二、参考学习过的博客这个文章中的batch_first=true输入的参数是错的,不要看他的代码,他那个hidden_prev 压根自己没搞懂怎么回事。这个博客提供了两种应用及两种RNN连接方式第一种:如,现在要用RNN做房价预测。如果目标是 输入今年1-6月的房价,输出是7-12月的房价,那可以直接将隐含层
转载
2024-08-13 09:00:29
140阅读
作者 小左 换言之,就是将序列本身作为输入,下一时刻作为输出,模型表达的是序列的联合概率分布。有兴趣的可以将其改写为判别模型。本文将使用卷积神经网络(CNN)用于时间序列预测。区别于图像处理(二维卷积如图所示)CNN用于序列预测时使用的是一维卷积,也就是我们熟悉的离散序列的卷积和,具体公式可以表示为:已知序列a={a0,a1,a2,…,am},L(a)=m+1b={b0,
转载
2023-12-15 12:01:00
49阅读
论文: TRANSFORMER TRANSDUCER: A STREAMABLE SPEECH RECOGNITION MODELWITH TRANSFORMER ENCODERS AND RNN-T LOSS思想: 论文作者借助RNN-T的整体架构,利用transformer替换RNN结构;因为transformer是一种非循环的attention机制,所以可以并行化计算,提升计算效率;此外
转载
2024-06-04 07:04:36
37阅读
摘要与声明1:本文将蒙特卡洛模拟的理念运用在股价预测上;2:本文所使用的行情数据通过Tushare(ID:444829)金融大数据平台接口获取;3:笔者希望搭建出一套交易体系,原则是只做干货的分享。后续将更新更多模块,但工作学习之余的闲暇时间有限,更新速度慢还请谅解;4:文中假设与观点是基于笔者对模型及数据的一孔之见,若有不同见解欢迎随时留言交流;5:模型实现基于python3.8;目录1. 一个
转载
2023-10-28 23:25:03
47阅读
RNN学习记录——预测代码实现RNN预测连续字符RNN预测股票 RNN预测连续字符abcd->e bcde->fimport numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, SimpleRNN, Embedding
import matplotlib.pyplot as pl
转载
2024-03-01 21:09:08
82阅读
1.Tensoflow2描述LSTM层 2.代码实现 #! /usr/bin/env python # -*- coding:utf-8 -*- # __author__ = "yanjungan" import numpy as np import tensorflow as tf from te
转载
2020-08-27 15:22:00
425阅读
2评论
# 用PyTorch进行股价预测
在金融领域,股价预测一直是一个备受关注的话题。利用机器学习技术进行股价预测已经成为一种常见的做法。PyTorch作为一种流行的深度学习框架,可以帮助我们构建和训练股价预测模型。在本文中,我们将介绍如何使用PyTorch进行股价预测,并提供相应的代码示例。
## 股价预测模型
股价预测是一个复杂的问题,通常涉及大量的数据和复杂的模型。在本文中,我们将使用一个简
原创
2024-02-25 07:47:33
173阅读
攒了几天,发一个大的这是前几天投了一家量化分析职位,他给的题目的是写神经网络择时模型,大概就是用神经网络预测收盘价database类:该类用于获得新浪网中的数据,并将其放入本地数据库。在本地数据库中建立两个表,分别是Data2012to2015和Data2015to2016,表中都含有日期,当日开盘价、当日收盘价、当日最高价、当日最低价。Data2012to2015为训练数据集,Data2015t
# Python股价预测
Python作为一种流行的编程语言,不仅在软件开发领域得到广泛应用,也在数据分析和预测领域有着重要的作用。股价预测是投资者们关注的重要问题,通过Python可以实现股价的预测分析,帮助投资者做出更明智的决策。
## 股价预测原理
股价预测是一种典型的时间序列预测问题,通过历史股价数据来预测未来的股价走势。常用的方法包括基于统计的时间序列分析、机器学习算法和深度学习模
原创
2024-05-31 06:47:29
90阅读
spark-stock背景此项目可以查看截止2021-06-30号,各基金公司持有的信息。本项目使用spark作为分析引擎,基于spark-rest开发内容只要功能介绍查看基金公司信息使用Test_Fund类的test_GetAllFund方法,将获取数据以parquet方式存在local,运行结果如下:+-------+-------------+-------------+--------
转载
2024-07-16 00:44:56
32阅读
1、RNN的基本设定在语言模型任务中,给定特定的单词序列(句子片段),任务目标是预测该片段的下一个单词(或者符号)。传统的n-gram模型可以应用于该任务,但是它存在着许多难以解决的问题:假设预测序列为 Tom open his ___①强假设问题:n-gram模型的构建依赖于过强的假设,即假设待预测的第n各单词只依赖于它之前的n-1个单词,即:②稀疏问题:由于n-gram模型的预测靠的是第对条件
转载
2024-08-09 12:39:08
117阅读
1. 写在前面今天分享的这篇文章是2017年发表在Nips上的一篇文章,来自于清华的团队。是论文阅读系列的第二篇文章,这篇文章是在ConvLSTM的基础上进行改进的一个版本,所以如果想学习这篇文章,需要先搞懂ConvLSTM的工作原理,可以参考这篇博客:时空序列预测之Convolutional LSTM Network,这是时空序列学习很重要的一种结构,但是存在的问题就是像本篇论文提到的:记忆状态
转载
2024-04-02 11:01:22
175阅读
RNN学习:利用LSTM,GRU解决航空公司评论数据预测问题 文章目录RNN学习:利用LSTM,GRU解决航空公司评论数据预测问题1.RNN的介绍1.1 LSTM的简单介绍1.2 GRU的简单介绍2.数据集的介绍3.读取数据并作预处理4.模型的搭建结语 1.RNN的介绍 RNN,即循环神经网络,即一般的神经网络同层节点与节点之间并无连接,比如CNN隐藏单元之间并没有连接,那么这相对于一些序列问题上
转载
2024-06-18 09:15:24
96阅读
最近在做一个RNN的实验,之前其实学习过RNN的一些知识,但由于长时间不用,加上很多API的更新,有些东西也记得不太清了,真的很想吐槽TF这种静态图,看个shape都费劲,现在也不想升级到2.0或者使用PyTorch,只能将就着用吧。 这个正弦预测应该算是入门基本实验了,网上很多资料都是一些小修小改,但是却很多都是错的,而错的人却还一直转载,我也是服了。建议还是去看看官方书籍或者自己调试一下吧,下
转载
2024-05-10 18:57:10
64阅读
机器学习算法与知识图谱声明:仅做...
原创
2021-09-24 09:43:29
10000+阅读
# Python Lasso回归预测调参教程
## 摘要
本文将教你如何使用Python中的Lasso回归模型进行预测,并详细介绍调参的步骤和相应的代码实现。作为一名经验丰富的开发者,我将使用表格、代码注释、类图和旅行图等方式帮助你更好地理解和学习。让我们一起开始吧!
## 整体流程
下面的表格展示了我们实现Python Lasso回归预测调参的整体流程:
| 步骤 | 描述 |
| ---
原创
2024-01-08 03:53:28
335阅读
序列模型文本预处理序列模型的核心其实就是去预测带时间序列的任务场景神经网络可以解决大部分问题;因为其能够学习到很多线性的和非线性的知识时间序列任务场景:一、语音识别; 二、生成一段音乐; 三、情感分析;四、**轨迹预测(**网格与网格之间是有联系的;只有将它们联系起来才能成为一条轨迹)时间序列:特点;前后关联强,“前因后果”(后面产生的结果,依赖前面产生的结果)标准神经网络建模的弊端弊端~ 针对位
转载
2024-03-08 07:19:34
105阅读
[Submitted on 9 May 2021] 摘要提出预测COVID-19大流行过程模型的研究论文,要么使用手工的统计学模型,要么使用大型神经网络模型。尽管大型神经网络比简单的统计模型更强大,但在小数据集上训练它们尤其困难。本文不仅提出了一种比其他神经网络具有更大灵活性的模型,而且提出了一种适用于较小数据集的模型。为了提高小数据的性能,我们测试了六种正则化方法。结果表明
转载
2024-06-18 21:33:30
70阅读
随着信息时代的到来,为得到我们所需要的信息,人们在各个方面对数据处理的要求也
原创
2022-10-08 09:57:41
144阅读