宽依赖,窄依赖
原创
2018-01-13 12:16:44
7909阅读
点赞
Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度中需要对计算过程划分stage,而划分依据就是RDD之间的依赖关系。针对不同的转换函数,RDD之间的依赖关系分类窄依赖(narrow dependency)和宽依赖(wide dependency, 也称 shuffle dependency)。窄依赖是指父RDD的每个分区只被子RDD的一个分区所使用,子RDD分区通常对应常数个父RDD
转载
2023-06-19 10:29:19
84阅读
主要围绕spark的底层核心抽象RDD和原理进行理解。主要包括以下几个方面RDD弹性分布式数据集的依赖关系RDD弹性分布式数据集的lineage血统机制RDD弹性分布式数据集的缓存机制spark任务的DAG有向无环图的构建spark任务如何划分stagespark任务的提交和调度流程1. RDD的依赖关系RDD和它依赖的父RDD的关系有两种不同的类型窄依赖(narrow dependency)和宽
转载
2023-10-08 13:17:25
671阅读
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言
一、RDD依赖二、宽窄依赖
1.窄依赖(Narrow Dependency)
2.宽依赖 (Shuffle 依赖) (Wide Dependency)三、流水线优化总结 前言 首先,我们先对Spark的内核调度做个理
转载
2023-09-05 10:12:27
37阅读
1. 起源spark的类加载及参数传递过程还是很复杂的,主要是因为他运行环境太复杂了,不同的集群管理器完全不一样,即使是同一集群管理器cluster和client也不一样,再加上这块探究还是需要一定的java功底和耐心的,会使得很多人望而却步。下图是yarn-cluster模式参数传递过程:下图是yarn-client模式参数传递过程:但是java代码,尤其是整合框架,公司大了假如没有统
术语解释窄依赖和宽依赖RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖。窄依赖父RDD和子RDD partition之间的数据关系是一对一的。或者父RDD一个partition只对应一个子RDD的partition情况下的父RDD和子RDD partition关系是多对一的。不会有shuffle的产生。宽依赖父RDD与子RDD partition之间的数据关系是一对多。会有shuffle
宽依赖与窄依赖窄依赖是指父RDD的每个分区只被子RDD的一个分区所使用,子RDD一般对应父RDD的一个或者多个分区。(与数据规模无关)不会产生shuffle。下面的join也是窄依赖,虽然有两个父RDD,但是两个 RDD中每个分区都被一个子RDD的分区使用,即使父RDD的分区里面的内容并没有让子RDD的一个分区使用。宽依赖指父RDD的多个分区可能被子RDD的一个分区所使用,子RDD分区通常对应所有
在Spark中,RDD(弹性分布式数据集)存在依赖关系,宽依赖和窄依赖。宽依赖和窄依赖的区别是RDD之间是否存在shuffle操作。窄依赖窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,即一个父RDD对应一个子RDD或多个父RDD对应一个子RDDmap,filter,union属于窄依赖窄依赖对于流水化作业有优化效果每一个RDD算子都是一个fork/join操作,join会写入磁盘,流水
转载
2023-10-05 11:02:10
81阅读
1、宽依赖和窄依赖1、区别
窄依赖: 父rdd的一个分区只对应子rdd一个分区。
窄依赖允许在一个集群节点上以流水线的方式(pipeline)计算所有父分区。
算子:map、union、map join和broadcast join。
宽依赖:父rdd的一个分区只对应子rdd多个分区。
宽依赖需要首先计算好所有父分区数据,然后在节点之间进行Shuffle。
算子
转载
2023-07-26 19:31:41
38阅读
1、使用MapPartitions替代Mapmap函数是应用于RDD的每个数据,MapPartitions是应用RDD的分区里的数据注意:如果在处理数据的时候,比较耗时(获取数据库连接),此时使用MapPartitions更合适2、foreachPartition替代foreachforeachPartition应用于RDD的每个分区,foreach是应用于RDD的每个元素3、coalesce替代
何为依赖?由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系;RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。如图所示显示了RDD之间的依赖关系?窄依赖:是指每个父RDD的每个Partition都只被子RDD的一个P
转载
2023-08-18 16:32:53
54阅读
一、宽依赖和窄依赖的定义【宽依赖:】 宽依赖表示同一个父(上游)RDD 的 Partition 被多个子(下游)RDD 的 Partition 依赖,会引起 Shuffle,总结:宽依赖我们形象的比喻为多生。有shuffle阶段【窄依赖:】 窄依赖表示每一个父(上游)RDD 的 Partition 最多被子(下游)RDD 的一个 Partition 使用,窄依赖我们形象的比喻为独生子女。没有shu
转载
2023-10-09 15:08:41
44阅读
1.宽窄依赖 图中左边是宽依赖,父RDD的4号分区数据划分到子RDD的多个分区(一分区对多分区),这就表明有shuffle过程,父分区数据经过shuffle过程的hash分区器(也可自定义分区器)划分到子RDD。例如GroupByKey,reduceByKey,join,sortByKey等操作。图右边是窄依赖,父RDD的每个分区的数据直接到子RDD的对应一个分区(一分区对一分区),例如
原创
2021-07-02 10:15:11
190阅读
RDD中的宽依赖和窄依赖在spark中,系统通过一个通用接口来抽象地表示每个RDD,这个接口的内容包括:一组分区(partition),指向父RDD的依赖关系,一个可以从父RDD得到该RDD的计算函数,分区策略,数据位置。这里详细讲解一下依赖关系: 依赖关系被分为两种: 窄依赖: 在这种依赖中,父RDD的一个分区最多只会被子RDD的一个分区使用,即父RDD的分区内数据是不可分割的,比如map操作
转载
2023-10-06 11:52:27
54阅读
Spark中RDD之间的依赖关系有哪些?它们的区别是什么?各自对应的算子有哪些?------面试题?
Spark中RDD的高效与DAG(有向无环图)有很大的关系,在DAG调度中需要对计算的过程划分Stage,划分的依据就是RDD之间的依赖关系。RDD之间的依赖关系分为两种,宽依赖(wide dependency/shuffle dependency)和窄依赖(narrow dependency)
1.前言 《上一节Spark DAG概述》Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度中需要对计算过程划分stage,
暴力的理解就是stage的划分是按照有没有涉及到shuffle来划分的,没涉及的shuffle的都划分在一个stage里面,
这种划分依据就是RDD之间的依赖关系。针对不同的转换函数,RDD之间的依赖关系分类窄依赖(narrow dependency
转载
2023-10-09 00:07:55
47阅读
Spark中RDD的高效与DAG(有向无环图)有很大的关系,在DAG调度中需要对计算的过程划分Stage,划分的依据就是RDD之间的依赖关系。RDD之间的依赖关系分为两种,宽依赖(wide dependency/shuffle dependency)和窄依赖(narrow dependency) 1.窄依赖窄依赖就是指父RDD的每个分区只被一个子RDD分区使用
转载
2023-10-29 10:48:21
47阅读
1.规律 如果JoinAPI之前被调用的RDD API是宽依赖(存在shuffle), 而且两个join的RDD的分区数量一致,join结果的rdd分区数量也一样,这个时候join api是窄依赖 除此之外的,rdd 的join api是宽依赖2.Join的理解 3.举例A表数据:
1 a
2 b
3 c
B表数据:
1 aa1
1 aa2
2 bb1
2 bb
总的来说,Spark采用更先进的架构,使得灵活性、易用性、性能等方面都比Hadoop更有优势,有取代Hadoop的趋势,但其稳定性有待进一步提高。我总结,具体表现在如下几个方面。 1 Q:Spark RDD是什么?A:RDD是Spark的基本抽象,是一个弹性分布式数据集,代表着不可变的,分区(partition)的集合,能够进行并行计算。也即是说:它是一系列的分片、比如说128M一片,类似