一、继承nn.Module类并自定义层
我们要利用pytorch提供的很多便利的方法,则需要将很多自定义操作封装成nn.Module类。
首先,简单实现一个Mylinear类:
from torch import nn
# Mylinear继承Module
class Mylinear(nn.Module):
# 传入输入维度和输出维度
def __init__(self,in_d,out_d):
# 调用父类构造函数
super(Mylinear,self).__init__()
# 使用Parameter类将w和b封装,这样可以通过nn.Module直接管理,并提供给优化器优化
self.w = nn.Parameter(torch.randn(out_d,in_d))
self.b = nn.Parameter(torch.randn(out_d))
# 实现forward函数,该函数为默认执行的函数,即计算过程,并将输出返回
def forward(self, x):
x = x@self.w.t() + self.b
return x
这样就可以将我们自定义的Mylinear加入整个网络:
# 网络结构
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.model = nn.Sequential(
#nn.Linear(784, 200),
Mylinear(784,200),
nn.BatchNorm1d(200, eps=1e-8),
nn.LeakyReLU(inplace=True),
#nn.Linear(200, 200),
Mylinear(200, 200),
nn.BatchNorm1d(200, eps=1e-8),
nn.LeakyReLU(inplace=True),
#nn.Linear(200, 10),
Mylinear(200,10),
nn.LeakyReLU(inplace=True)
)
我们可以看出,MLP网络实际上也是继承自Module,这就说明了,nn.Module实际上可以实现一个嵌套的结构,我们的整个网络就是由一个嵌套的树形结构组成的。例如:
# Mylinear继承Module
class Mylinear(nn.Module):
# 传入输入维度和输出维度
def __init__(self, in_d, out_d):
# 调用父类构造函数
super(Mylinear, self).__init__()
# 使用Parameter类将w和b封装,这样可以通过nn.Module直接管理,并提供给优化器优化
self.w = nn.Parameter(torch.randn(out_d, in_d))
self.b = nn.Parameter(torch.randn(out_d))
# 实现forward函数,该函数为默认执行的函数,即计算过程,并将输出返回
def forward(self, x):
x = x @ self.w.t() + self.b
return x
# 将几个nn.Module组件综合成一个
class Mylayer(nn.Module):
def __init__(self, in_d, out_d):
super(Mylayer, self).__init__()
# 包含一个全连接层,一个BN层,一个Leaky Relu层
self.lin = Mylinear(in_d, out_d)
self.bn = nn.BatchNorm1d(out_d, eps=1e-8)
self.lrelu = nn.LeakyReLU(inplace=True)
# 按顺序跑一遍3种网络,返回最终结果
def forward(self, x):
x = self.lin(x)
x = self.bn(x)
x = self.lrelu(x)
return x
# 网络结构
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.model = nn.Sequential(
Mylayer(784, 200),
Mylayer(200, 200),
# nn.Linear(200, 10),
Mylinear(200, 10),
nn.LeakyReLU(inplace=True)
)
上述代表表示的结构如下图所示:
其中所有的类都继承自nn.Module,从前往后是嵌套的关系。在上述代码中,真正做计算的是橙色部分1-8,而其他的都只是作为封装。其中nn.Sequential、nn.BatchNorm1d、nn.LeakyReLU是pytorch提供的类,Mylinear和Mylayer是我们自己封装的类。
二、实现一个常用类Flatten类
Flatten就是将2D的特征图压扁为1D的特征向量,用于全连接层的输入。
# Flatten继承Module
class Flatten(nn.Module):
# 传入输入维度和输出维度
def __init__(self, in_d, out_d):
# 调用父类构造函数
super(Flatten, self).__init__()
# 实现forward函数
def forward(self, input):
# 保存batch维度,后面的维度全部压平
return input.view(input.size(0), -1)
三、nn.Module类的作用
1.便于保存模型:
# 每隔N epoch保存一次模型
torch.save(net.state_dict(),'ckpt_n_epoch.mdl')
# 下次训练时可以直接导入接着训练
net.load_state_dict(torch.load('ckpt_n_epoch.mdl'))
2.方便切换train和val模式
### 不同模式对于某些层的操作时不同的,例如BN,dropout层等
# 切换到train模式
net.train()
# 切换到validation模式
net.eval()
3.方便将网络转移到GPU上
# 定义GPU设备
device = torch.device('cuda')
# 将网络转移到GPU,注意to函数返回的是net的引用(引用是不变的)
# 不同的是net中的参数都转移到GPU上去了
net.to(device)
# 不同于参数直接转移,转移后的w2(在GPU上)和转移前的w(在CPU上)两者完全是不一样的
# 我们要使之在GPU上运行,则必须使用w2
#w2 = w.to(device)
4.方便查看各层参数
# 获取由每一层参数组成的列表
para_list = list(net.parameters())
# 获取一个(name,每层参数)的tuple组成的列表
para_named_list = list(net.named_parameters())
# 获取一个{'model.0.weight': 参数,'model.0.bias': 参数, 'model.1.weight': 参数}
para_named_dict = dict(net.named_parameters())
四、数据增强
torchvision提供了很方便的数据预处理工具,数据增强可以一次性搞定。
from torchvision import datasets, transforms
train_data_trans = datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
# 水平翻转,50%执行
transforms.RandomHorizontalFlip(),
# 垂直翻转,50%执行
transforms.RandomVerticalFlip(),
# 随机旋转范围在正负15°之间,也可以写(-15,15)
transforms.RandomRotation(15),
# 旋转范围在90-270之间
#transforms.RandomRotation([90,270]),
# 将图片方缩放到指定大小
transforms.Resize([32,32]),
# 随机剪裁图片到指定大小
transforms.RandomCrop([28,28]),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
如果pytorch没有提供需要的预处理类,我们可以参照源码仿造写一个自定义处理的类来进行处理。例如对图片添加白噪声,按通道变换颜色等等。