文章目录机器学习的sklearn库一、回归分析<1.1>线性回归1.1.1、Python实现线性回归<1.2>最小二乘法1.2.1、MATLAB实现最小二乘法1.2.2、MATLAB实现最小二乘法(矩阵变换)二、岭回归与Lasso回归<2.1>岭回归 ——(权值衰减)2.1.1、岭回归原理2.1.2、Python实现岭回归2.1.3、MATLAB实现岭回归&l
转载
2024-04-28 17:26:57
69阅读
User Guide 第三部分 Model selection and evaluation1 Cross-validation: evaluating estimator performance在同一数据集上学习预测函数的参数然后进行测试是一个方法上的错误:这种模型会得到一个很好的分数,让分类器重复看到他刚刚学习过得样本,但是对于它没看过的数据却不能预测出任何有用的东西。这种
转载
2023-11-28 13:50:27
85阅读
这篇主要记录数据建模中的线性回归的学习如何用Sklearn进行线性回归分析?这部分主要记录2个关键知识点:回顾回归模型原理与工作流程如何使用Python的Sklearn进行模型搭建什么是回归模型? 线性回归都有哪些应用场景?保险行业 (用户的保费 赔付金额)旅游行业 (用户的出行次数 度假时长)电商行业 (用户网页停留时间 购物车的商品数量)注意:回归分析虽然是最常见的分
转载
2024-06-12 21:18:44
36阅读
sklearn逻辑回归实现更加优化,且支持多元分类场景 下面的代码展示如何用sklearn,linear_model.LogisticRegression类以及fit方法在三种花的标准化训练集上训练模型from sklearn.linear_model import LogisticRegression
lr=LogisticRegression(C=100.0,random_state=1)
l
转载
2023-09-25 19:54:02
84阅读
sklearn实现逻辑回归_以python为工具【Python机器学习系列(十)】 文章目录1.线性逻辑回归2.非线性逻辑回归3.乳腺癌数据集案例 ʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔɞ ʚʕ̯•͡˔•̯᷅ʔ
转载
2023-06-28 14:14:32
242阅读
目录1.LR基础1.1 逻辑回归正则化2. 线性逻辑回归代码实现2.1 梯度下降法python实现2.2 skleran库python实现3. 非线性逻辑回归代码实现3.1 梯度下降法python实现3.2 skleran库python实现4. LR总结4.1 LR优缺点4.2 逻辑回归 VS 线性回归总结:1.LR基础虽然叫回归,但是做的是分类问题。 逻
转载
2024-05-16 18:29:14
52阅读
文章目录二分类多分类不同惩罚的稀疏度正则化路径 二分类import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
from scipy.special import expit
# General a toy dataset:s it's just a straight line wi
转载
2024-05-29 01:08:26
28阅读
1.逻辑回归是怎么防止过拟合的? 为什么正则化可以防止过拟合? ① 逻辑回归是怎么防止过拟合的?答:(1) 增加样本量,这是万能的方法,适用任何模型。 (2) 如果数据稀疏,使用L1正则,其他情况,用L2要好,可自己尝试。 (3) 通过特征选择,剔除一些不重
转载
2024-04-01 17:04:16
135阅读
逻辑回归的常见面试点总结:(逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。)逻辑回归和线性回归的联系和区别参考原文:逻辑回归:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类。所以逻辑回归就是将线性回归的(−∞,+∞)结果,通过sigmoid函数映射到(0,1)之间。线性回归决策函数:hθx=θ
转载
2024-05-20 16:30:32
44阅读
点赞
0.概述线性回归不仅可以做回归问题的处理,也可以通过与阈值的比较转化为分类的处理,但是其假设函数的输出范围没有限制,这样很大的输出被分类为1,较少的数也被分为1,这样就很奇怪。而逻辑回归的假设函数的输出范围是0~1。当数据集中含有误差点时,使用线性回归相应的误差也会很大。逻辑回归其实是分类算法,但是由于历史原因被称为逻辑回归。逻辑回归的假设函数以线性回归的假设函数为基础,通过S形函数进行复合形成的
转载
2024-05-04 11:26:37
36阅读
LogisticRegressionCV使用了交叉验证来选择正则化系数C。LogisticRegression需要自己每次指定一个正则化系数。除了交叉验证以及选择正则化系数C以外, LogisticRegression和LogisticRegressionCV的使用方法基本相同。logistic_regression_path类则比较特殊,它拟合数据后不能直接来做预测,只能为拟合数据选择合适逻辑回
转载
2024-03-25 15:28:30
81阅读
目录一、 线性回归二、 Spark MLlib 的 SGD 线性回归算法三、 Spark MLlib 的 SGD 线性回归算法实例四、 逻辑回归回归分析的基本概念是用一群变量预测另一个变量的方法。通俗点来讲,就是根据几件事情的相关程度来预测另一件事情发生的概率。回归分析的目的是找到一个联系输入变量和输出变量的最优模型。 回归方法有许多种,可通过 3 种方法进
转载
2024-06-21 22:40:59
52阅读
目录线性回归Sigmoid函数逻辑回归逻辑回归的损失函数正则化L1正则化L2正则化L1正则化和L2正则化的区别梯度下降法梯度下降法的代数方式描述先决条件算法相关参数初始化算法过程梯度下降法的矩阵方式描述先决条件算法相关参数初始化算法过程梯度下降法分类批量梯度下降法BGD随机梯度下降法SGD小批量梯度下降法MBGD总结梯度下降的算法调优python中实现逻辑回归 线性回归提到逻辑回归我们不得不提一
转载
2023-10-11 09:44:31
154阅读
SKlearn学习笔记——逻辑回归1. 概述1.1 名为“回归”的分类器1.2 为什么需要逻辑回归1.3 sklearn中的逻辑回归2. linear_model.LogisticRegression2.1 二元逻辑回归的损失函数2.2 正则化:重要参数penalty & C2.3 梯度下降:重要参数max_iter2.4 二元回归与多元回归:重要参数solver2.5 逻辑回归中的特征
转载
2024-03-22 15:44:54
114阅读
逻辑回归实际是一种有监督学习中的分类算法,称为回归是历史原因前言前面我们已经学习了线性回归,线性回归适用于预测一个连续值,就是说预测值可能的范围存在连续,比如前面讲的房价问题,房价可能的值就是一个连续的范围(比如0~10w),但是它不能很好的处理分类问题,也就是要预测一个离散值(如0,1,2),比如判断一封邮件是否为垃圾邮件,预测值只有1和0两种,其实可以领会到线性回归是对样本整体的一个统计平均,
K最近邻算法使用的直接是sklearn中的KNN。 K最近邻算法属于监督学习的一种。 它既可以应用于分类,也可以应用于回归。一:K最近邻算法原理KNN用于分类KNN用于回归其思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。在scikit-learn中,K最近邻算法的K值是通过n_neighbors参数来调节的,默认值是5
转载
2024-08-12 13:51:35
163阅读
1.1 scikit-learn参数介绍1.1.1 导入from sklearn.linear_model import LogisticRegression1.1.2 版本scikit-learn==0.21.31.1.3 参数1.1.3.1 penaltyl1、l2、elasticnet、none,默认l2l1
转载
2023-12-17 15:43:26
152阅读
一.过拟合原因什么是过拟合:模型可以完美的预测训练集,但对新数据的测试集预测结果差。 过度的拟合了训练数据,而没有考虑到泛化能力。二.缓解过拟合方法减少过拟合总结:过拟合主要是有两个原因造成的:数据太少+模型太复杂 (1)获取更多数据 :从数据源头获取更多数据;数据增强(Data Augmentation) (2)early stopping (3)dropout ; (4)正则化
转载
2024-09-21 12:13:27
157阅读
Sklearn实现逻辑回归
原创
2021-07-08 16:10:36
758阅读
sklearn.linear_model.LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)solver可选参数:{'liblinear', 'sag', 'saga','newton-cg', 'lbfgs'},默认: 'liblinear';用于优化问题的算法。对于小数据集来说,“liblinear”是个不错的选择,而“s