文章目录引言5.1基于logistic回归和sigmoid函数的分类5.2基于最优化的最佳回归系数确定5.2.1梯度上升法5.2.2训练算法5.2.3分析数据:画出边界线5.2.4随机梯度上升5.3示例:从气病症预测病马的死亡率5.3.1准备数据5.3.2 测试算法:用Logistic回归进行分类5.4小结 引言利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以
转载
2024-02-08 07:35:38
193阅读
代码和word版笔记下载地址: 一:模型引入 对于分类问题,最终预测值是离散的,线性回归不能很好地对这类问题进行建模。Logistic模型是对于y∈{0,1}分类问题的可靠模型,其可靠性在GLM理论中得到验证和说明。 二:模型说明 1)该模型不是直接对变量x对应的类别号进行预测,而是对其属于类别1的概率进行预测。显然,如果这个概率大于0.5,我们则可以认为x属于类别1,否则属于类别0。 2
转载
2024-04-09 10:40:29
119阅读
> Photo by Thought Catalog on Unsplash 暂时忘记深度学习和神经网络。随着越来越多的人开始进入数据科学领域,我认为重要的是不要忘记这一切的基础。统计。如果您不熟悉分析领域,那就可以了! 我们都是从某个地方开始的!但是,重要的是要意识到我将在本文中分享的机器学习模型假设的存在。很幸运,我在大学时代就已经研究了所有这些概念,所以我认为回到基础知识并撰写
转载
2024-05-13 12:07:57
563阅读
一、问题描述 前面我们讨论了使用线性模型进行回归学习,但是要做分类任务怎么办?只需要找一个单调可微函数将任务分类的真实标记 y 与线性回归模型的预测值联系起来。 考虑二分类任务,其输出应该是 y 属于[0, 1]。而线性回归模型产生的预测值 z = wx+b是实值。于是我们考虑将 z 转换到 0 / 1值。二、对数几率回归&n
转载
2024-03-21 10:06:02
277阅读
目录一.逻辑回归简介二.损失函数三.决策边界四.在逻辑回归中使用多项式特征五.scikit-learn中的逻辑回归六.OvR与OvO 一.逻辑回归简介signoid函数:import numpy as np
import matplotlib.pyplot as plt
def sigmoid(t):
return 1. / (1. + np.exp(-t))
x = np.linspa
转载
2024-06-28 17:26:53
53阅读
1.基本形式给定由d个属性描述的示例,其中是在第个属性上的取值,线性模型通过对属性的线性组合来预测的函数:
转载
2024-05-13 10:36:56
996阅读
文章目录0.Logistic模型简介1. python数据处理标准流程2. 混淆矩阵与预测3. 交叉验证4. 网格搜索5. pipeline管道 0.Logistic模型简介logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以胃癌病情分析为例,选择两组人群
转载
2023-09-28 14:30:47
261阅读
假设现在有一些点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归。利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,依次进行分类。Logistic回归的一般过程(1)收集数据:采用任意方法收集数据(2)准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳(3)分析数据:采用任意方法对数据进行分析(4)
转载
2023-06-27 10:33:52
209阅读
本文简单整理了以下内容:(一)线性回归(二)二分类:二项Logistic回归(三)多分类:Softmax回归(四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完《统计学习方法》第一章之后直接就跳去了第六章,好像是对“逻辑斯蒂”这个名字很感兴趣?。。。),对
转载
2024-05-14 19:06:10
122阅读
七,专著研读(Logistic回归)分类:k-近邻算法,决策树,朴素贝叶斯,Logistic回归,支持向量机,AdaBoost算法。运用k-近邻算法,使用距离计算来实现分类决策树,构建直观的树来分类朴素贝叶斯,使用概率论构建分类器Logistic回归,主要是通过寻找最优参数来正确分类原始数据逻辑回归(Logistic Regression):虽然名字中有“回归”两个字,但是它擅长处理分类问题。LR
Logistic回归模型Logistich回归模型也被成为广义线性回归模型。
它是将线性回归模型的预测值经过非线性的Logit函数转换为[0,1]之间的概率值。
研究得是分类问题,跟之前的线性回归、岭回归、Lasso回归不同。混淆矩阵实际值
预 0 1
测 0 A B A+B
值 1 C D C+D
A+C B+D
-----------------
转载
2023-12-28 15:55:45
157阅读
前面我们知道对数函数和对数函数的一些基本性质,也许你会问,为什么要引入对数函数?而且还是一个基本初等函数?这就要从logit变换说起。
原创
2021-06-04 14:59:37
944阅读
从logit变换到logistic模型logit变换几率logistic模型前面我们知道对数函数和对数函数的一些基本性质,也许你会问,为什么要引入对数函数?而且还是一个基本初等函数?这就要从logit变换说起。logit变换我们在研究某一结果(y)与一系列因素
(
原创
2022-04-08 17:51:45
974阅读
写在前面:在本篇博客中,旨在对线性回归从新的角度考虑,然后引入解决线性回归中会用到的最大似然近似(Maximum Likelihood Appropriation-MLA)求解模型中的参数,以及梯度下降法解决MLA。然后分析加入不同范数(L0, L1, L2)对线性回归的影响。其次,另外一个重点是Logistic回归,他们分别用来做回归和分类。线性回归与Logistic回归的区别,以及由Logis
转载
2024-08-13 11:24:48
72阅读
logistic回归模型前言logistic回归模型logit变换几率logistic模型二项逻辑回归模型损失函数logistic回归模型的应用logistic回归模型的评价前言从这一期开始,我们准备介绍一系列机器学习算法模型,主要包括logistic回归,决策树,随机森林,关联规则,朴素贝叶斯,支持向量机,隐式马尔可夫,因子
原创
2022-04-08 17:56:00
766阅读
logistic回归模型从这一期开始,我们准备介绍一系列机器学习算法模型,主要包括logistic回归,决策树,随机森林,关联规则,朴素贝叶斯,支持向量机模型,隐式马尔可夫模型,因子分析,主成分分析,聚类,多元线性回归,时间序列,协同过滤,XGBoost,LightGBM等,大致包括模型的引入背景,背后数学原理,模型的应用范围,模型优缺点及改进建议以及具体工程实践。
原创
2021-06-05 20:28:15
697阅读
利用广义线性模型实现的分类——Logistic回归作者:王 歌
利用广义线性模型实现线性回归以及它的正则化——岭回归和LASSO回归,它们解决的都是对连续数值进行预测的回归问题,其实我们还可以利用回归的思想来解决分类问题,这就是我们今天要介绍的Logistic回归。一、算法原理1.模型形式——利用Sigmoid函数Logistic回归适用于数值型或标称型(目标变量的结果只在有限目标集
转载
2023-12-12 16:31:21
1082阅读
Softmax回归Contents [hide]1 简介2 代价函数3 Softmax回归模型参数化的特点4 权重衰减5 Softmax回归与Logistic 回归的关系6 Softmax 回归 vs. k 个二元分类器7 中英文对照8 中文译者简介在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值
逻辑回归符合伯努利分布。伯努利分布就是我们常见的0-1分布,即它的随机变量只取0或者1,各自的频率分别取1−p和p,当x=0或者x=1时,我们数学定义为:所以在常规的逻辑回归模型中,只有两个类别,0或者1,适合二分类问题。模型函数逻辑回归模型可以看成是将线性回归模型放入一个sigmoid函数中。线性回归模型为。sigmoid函数是。所以逻辑回归模型函数是。sigmoid函数的范围为[0,1],所以
转载
2024-07-29 15:28:50
0阅读
逻辑回归的基本过程:a建立回归或者分类模型--->b 建立代价函数 ---> c 优化方法迭代求出最优的模型参数 --->d 验证求解模型的好坏。1.逻辑回归模型: 逻辑回归(Logistic Regression):基于线性回归的分类算法。一般用于解决二分类问题。线性回归模型如下:
转载
2024-05-06 20:51:38
129阅读