前面介绍的几种滤波器都属于平滑滤波器(低通滤波器),用来平滑图像和抑制噪声的;而锐化空间滤波器恰恰相反,主要用来增强图像的突变信息,图像的细节和边缘信息。平滑滤波器主要是使用邻域的均值(或者中值)来代替模板中心的像素,消弱和邻域间的差别,以达到平滑图像和抑制噪声的目的;相反,锐化滤波器则使用邻域的微分作为算子,增大邻域间像素的差值,使图像的突变部分变的更加明显。本位主要介绍了一下几点内容:图像的一
局部均值(NL-means)是近年来提出的一项新型的去噪技术。该方法充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征。基本思想是:当前像素的估计值由图像中与它具有相似邻域结构的像素加权平均得到。 理论上,该算法需要在整个图像范围内判断像素间的相似度,也就是说,每处理一个像素点时,都要计算它与图像中所有像素点间的相似度。但是考虑到效率问题,实现的时候,会设定两个固
  在开始我们今天的博客之前,我们需要先了解一下什么是滤波:openCV之中值滤波&均值滤波(及代码实现)首先我们看一下图像滤波的概念。图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。下图左边是原图右边是噪声图:消除图像中的噪声成分叫作图像的平滑化或滤波操作
1. 简介Non-Local Means顾名思义,这是一种非局部平均算法。何为局部平均滤波算法呢?那是在一个目标像素周围区域平滑取均值的方法,所以非局部均值滤波就意味着它使用图像中的所有像素,这些像素根据某种相似度进行加权平均。滤波后图像清晰度高,而且不丢失细节。2. 原理该算法使用自然图像中普遍存在的冗余信息来去噪声。与双线性滤波、中值滤波等利用图像局部信息来滤波不同,它利用了整幅图像进行去噪。
文章目录1 均值和非局部均值滤波2 论文【使用新的相似性度量方法做非局部均值滤波】2.1 类相似性度量2.2 参数估计算法2.3 根据非局部上下文信息分类 均值与非局部均值滤波的思想与普通网络和attention网络的思想我认为是一致的,非常像,对我来说认为两者思想一样是一个聚合总结的过程,也许等我了解的更多,我会经历一个发散找到两者不同的过程。 1 均值和非局部均值滤波均值滤波器利用滑窗的方式
【图像处理】-014 空域滤波处理-均值滤波  在上一篇中,我们对图像进行了频率域中的滤波处理,通过在频率域中设计合适的滤波器,对图像的不同频率的分量进行不同处理,比如低通滤波时将低频分量通过高频分量截止,高通滤波时对高频分量通过低频分量截止。以后我们还会遇到带通、带阻、陷波滤波器等不同形式的滤波器。频域滤波是在频率域中将滤波器与图像相乘得到的。由于频域相乘等空域相乘,那么,在空域中肯定也是可以进
转载 2024-04-30 18:19:53
138阅读
局部均值滤波算法(NL-means)今天来学习一下另一类滤波算法:非局部均值滤波算法(NL-means)。非局部均值滤波算法最早于2005年由Buades等人发表在CVPR上,论文原文:A non-local algorithm for image denoising,还有一篇2011年的论文:Non-Local Means Denoising。之后还会继续介绍DCT(离散余弦变换滤波)、TV(
在上一篇文章中,我们讲了使用积分图来加速NL-means算法,虽然运算耗时减少了好多,还是没达到毫秒级。所以本文在积分图加速的基础上,进一步使用CUDA来并行加速,使得耗时减少到毫秒级。使用积分图来加速NL-means算法原理,此处给出链接,不再复述:非局部均值滤波(NL-means)算法的原理与C++实现非局部均值滤波(NL-means)算法的积分图加速原理与C++实现1. 使用CUDA并行计算
在上一篇文章中,我们讲解了非局部均值滤波算法的原理,以及使用C++和Opencv来实现了该算法:非局部均值滤波(NL-means)算法的原理与C++实现我们知道,非局部均值滤波是非常耗时的,这很影响该算法在实际场景中的应用。所以后来有研究人员提出使用积分图来加速该算法,可提升数倍的速度。本文我们将详细讲解该算法的积分图加速原理,并使用C++与Opencv来将其实现。积分图的原理我们之前也讲过,此处
在图像处理中,对图像的滤波是非常常见的一种运算,我们耳熟能详的高斯滤波,双边滤波,导向滤波,而所有的这些滤波其实都是基于局部的一种线性运算。我们知道,几乎所有的滤波或者局部运算都可以表示成如下的这种形式:其中,,是一个归一化系数,上面这个表达式,也就意味着图像中,像素 的值 等于其邻域 的一个线性组合, 表示的就是邻域像素 对于高斯滤波来说,其 为了简化,一般可以假设 , 可以看成是像素
转载 2024-08-07 13:50:45
45阅读
这篇文章写的非常好!!!!!!!!!!!!滤波器设计是一个创建满足指定滤波要求的滤波器参数的过程。滤波器的实现包括滤波器结构的选择和滤波器参数的计算。只有完成了滤波器的设计和实现,才能最终完成数据的滤波。    滤波器设计的目标是实现数据序列的频率成分变更。严格的设计规格需要指定通带波纹数、阻带衰减、过渡带宽度等。更准确的指定可能需要实现最小阶数的滤波器、需
一:非局部均值均值滤波:以目标像素点x为中心,对其半径为r的范围内的像素加权求和取平均作为像素点x滤波后的值非局部均值滤波均值滤波是对目标像素点x范围内的像素点加权求和,但这个权重是人为设定的,一般就是取1,也就是说这个范围内的像素点对中心点x的影响是相同的,这明显不对。那各个像素点对中心点x的权重应该怎么设置呢?非局部均值滤波其实就是计算不同位置像素点对中心点x的影响权重,再进行加和取平均。这
在上一篇文章中,我们讲解了非局部均值滤波算法的原理,以及使用C++和Opencv来实现了该算法:非局部均值滤波(NL-means)算法的原理与C++实现我们知道,非局部均值滤波是非常耗时的,这很影响该算法在实际场景中的应用。所以后来有研究人员提出使用积分图来加速该算法,可提升数倍的速度。本文我们将详细讲解该算法的积分图加速原理,并使用C++与Opencv来将其实现。积分图的原理我们之前也讲过,此处
转载 2024-08-09 11:37:08
88阅读
局部变量初始化议题讨论     这篇文章集中讨论了非局部变量的一些初始化议题,包括非局部变量的定义;非局部变量初始化规则和现实中跨编译单元的初始化顺序依赖的几种解决方案。   文中的内容都源自一些C++书籍(BS的TCPL,Sutter的Exceptional系列),库的源代码和MSDN。 &
前言:本篇博客先介绍滤波器滤除噪声,再介绍滤波器复原,侧重于程序的实现。一:三种常见的噪声    二:空间域滤波空间域滤波复原是在已知噪声模型的基础上,对噪声的空间域进行滤波。 空间域滤波复原方法主要包括:  均值滤波器    算术均值滤波器    几何均值滤波器     谐波均值滤波器     逆谐波均值滤波器   顺序统计滤波器     中值滤波器   
非线性滤波如果噪声是散粒噪声而不是高斯噪声的时候,用高斯滤波对图像进行模糊,噪声像素不会被去除,只是转换为更为柔和但是仍然可见的散粒。中值滤波MedianFilter是一种典型的非线性滤波技术,基本思想是用像素领域的灰度值的中值代替像素点的灰度值,一些情况下对保留图像边缘细节有效果。 对于斑点噪声和椒盐噪声效果尤其好,不依赖于领域中与典型值差别大的值。中值滤波vs均值滤波优势:消除噪声,保留边缘的
其中,均值滤波的核心思路是取每一个像素点邻域的矩形窗口,计算矩形窗口内所有像素点的像素平均值,作为该点滤波之后的像素值。高斯滤波均值滤波类似,都是计算矩形窗口内所有像素点的像素值加权和,只不过其权重与均值滤波不一样,高斯滤波的权重服从二维正态分布,越靠近窗口中心点(也即当前滤波点),权重越大。本文我们主要讲非局部均值(NL-means)滤波算法的原理与实现。其核心思路与高斯滤波很相似:计算矩形窗
最近开始学习在Denoise方面的内容,在这方面比较重要的传统算法当然是BM3D这种到目前比较fancy的,效果也是目前最好的算法。但是BM3D的一个致命缺点就是速度很慢,所以BM3D我们以后再说吧,我们先讲一下BM3D算法中的基础,Non Local Mean算法。总所周知,很多的简单的降噪算法,都是单Kernel的,例如,均值滤波、中值滤波等,都是使用一个固定的Kernel对图像进行一个滤波
1.局部算子分类: 1)基于分布的算子:使用直方图表现不同的外观或形状特2)空间频率技术:傅立叶变换和盖伯变换3)微分算子:  2.局部特征建立依赖的空间1)归一化的Laplacian尺度空间2)  Difference of Gaussian3. 局部区域检测算法1)Harris points    旋转不变量 特征
最近有网友问能不能写一下LMS滤波算法的FPGA实现,当然可以,因为去年我就已经做过LMS滤波算法的FPGA实现,只是一直没有讲。 小朋友,你是否有很多问号 本文简单阐述LMS算法的原理,更细节的内容知乎上有人介绍,然后讲LMS算法的FPGA实现方法,将涉及部分现代信号处理,随机信号分析,矩阵,概率论等知识。本文所用的FPGA代码为去年写,记忆可能有些偏差,实现
  • 1
  • 2
  • 3
  • 4
  • 5