k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(
转载
2024-02-29 13:35:53
56阅读
文章目录1 聚类算法分类2 常见聚类算法2.1 kmeans2.1.1 工作原理2.1.2 计算距离的方式2.1.3 kmeans的损失函数2.1.4 k-means算法的优缺点2.2 层次聚类2.3 密度聚类2.3.1 DBSCAN2.3.2 密度最大值算法3 聚类算法的模型评估指标3.1 当真实标签已知的时候3.2 当真实标签未知的时候:轮廓系数3.3 当真实标签未知的时候:Calinski
转载
2024-05-29 08:08:43
158阅读
%%%%%%% 对给定的二维点集,利用Kmeans方法进行聚类 clc, clear all, close all %% 1.数据导入 %%%构造一组数据,其分类数目从直观上比较明显 mu1 = [1 1]; Sigma1 = [0.5 0; 0 0.5]; mu2 = [3 3]; Sigma2 ...
转载
2021-09-12 21:17:00
520阅读
2评论
一.K-均值聚类(K-means)概述1.聚类“类”指的是具有相似形得几何。聚类是值将数据集划分为若干类,是的类内之间得数据最为相似
原创
2022-05-23 17:13:52
1949阅读
1.Hashtable和HashMap不同点总结如下① Hashtable是Dictionary的子类,实现了Map接口;HashMap是AbstractMap的子类,是Map接口的一个实现类;② Hashtable中的方法是同步的,大多数方法如put, get都用用synchronized关键字修饰。而HashMap是线程不安全的。在多线程程序中,可以不添加额外操作就可以安全的使用Hashtab
本文是对聚类算法的概念、原理的学习,并附有代码,特别学习了聚类算法中的两种常见算法:KMeans和DBSCAN一、什么是聚类1.含义 聚类(Clustering) 是按照某个特定标准(如距离)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大,即把相似的东西分到一组; 参考自https://zhuanlan.zhihu.
转载
2023-08-23 21:18:43
168阅读
1.K-均值聚类法的概述 之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理。最近因为在学模式识别,又重新接触了这种聚类算法,所以便仔细地研究了一下它的原理。弄懂了之后就自己手工用matlab编程实现了,最后的结果还不错,嘿嘿~~~ 简单来说,K-均值聚类就是在给定了一组样本(x1,
原创
2017-05-09 10:05:28
4454阅读
聚类算法: 用于将相似的样本自动归到一个类别中。在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。 聚类算法与分类算法最大的区别: 聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。KMeans简述: K-means算法,也称为K-平均或者K-均值,一般作为掌握聚类算法的第一个算法。 这里的K为常数
转载
2023-12-24 07:55:41
76阅读
K均值聚类参考博客:opencv K均值聚类(python)Kmeans图像分割实践聚类能够将具有相似属性的对象划分到同一个集合(簇)中。聚类方法能够应用于所有对象,簇内的对象越相似,聚类算法的效果越好。K均值聚类的基本步骤K均值聚类是一种将输入数据划分为k个簇的简单的聚类算法,该算法不断提取当前分类的中心点(也称为质心或重心),并最终在分类稳定时完成聚类。从本质上说,K均值聚类是一种迭代算法。在
转载
2023-08-10 21:56:40
70阅读
目录1.聚类算法的简介2.常见的聚类算法K-MEANS聚类算法均值偏移聚类算法GMM的期望最大化聚类1.聚类算法的简介聚类算法是一种典型的无监督学习算法,将相似的样本自动归类到一个类别当中。计算相似度的方法就包括了欧氏距离法。2.常见的聚类算法K-MEANS聚类算法?假设有k个质心以及分布了很多个点,哪个点离哪个质心近就划分到那个质心对应的类中,然后之后再在每个类中再求平均值,确定新的质心,如此迭
转载
2024-05-04 23:14:29
82阅读
K均值算法K均值算法是一个经典的,被广泛使用的聚类算法。算法过程K均值算法中首先选择K个初值。K是用户指定的参数,即希望聚成的簇的个数。每个点指派到最近的质心,指派到一个质心的点集为一个簇。然后更新每个簇的质心,直到簇不发生变化,或质心不发生变化(二者等价),结束算法。算法: K均值
--------------------
选择K个点作为初始质心。 (STEP 1)
repeat
将每
转载
2024-03-21 10:07:56
173阅读
k-均值聚类算法Kmeans算法是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。K-Means算法如何工作?输入:样本集D,簇的数目k,最
转载
2023-08-24 15:06:13
100阅读
前言:有三维聚类图,我只是一个代码的搬运工。。。 文章目录k-均值(k-means)聚类1、k-均值算法2、k-均值算法的代价函数3、k-均值算法步骤4、初始化聚类中心点和聚类个数5、sklearn实现k-means算法 k-均值(k-means)聚类1、k-均值算法k-均值算法是一种无监督学习,是一种“基于原型的聚类”(prototype-based clustering)方法,给定的数据是不含
转载
2024-08-02 21:35:41
105阅读
1、前面一篇文章算法——K均值聚类算法(Java实现)简单的实现了一下K均值分类算法,这节我们对于他的应用进行一个扩展应用2、目标为对对象的分类3、具体实现如下1)首先建立一个基类KmeansObject,目的为继承该类的子类都可以应用我们的k均值算法进行分类,代码如下package org.cyxl.util.algorithm;
/**
* 所有使用k均值分类算法的对象都必须继承自该对象
转载
2024-06-24 13:11:04
0阅读
1、聚类是一种无监督学习,他讲相似的对象放到同一簇下,有点像自动分类。聚类方法几乎可以用到任何对象上,簇内的对象越相似,聚类结果就越好。2、K均值聚类的优点 算法简单容易实现 缺点: 可能收敛到局部最小值,在大规模数据上收敛速度较慢3、K-均值算法算法流程以及伪代码 首先随机选择k个初始点作为质心。然后将数据集中的每个点分配到一个簇中,具体来说,遍历数据集计算数据与质心之间的距离找到最小的
转载
2023-06-07 16:48:54
182阅读
K均值(K-means)算法——非监督、聚类
1、K均值(K-means)算法K均值算法,是一种广泛使用的非监督聚类算法。该算法通过比较样本之间的相似性,将较为相似的样本划分到同一个类别中。由于K均值算法简单、易于实现的特点而得到广泛应用。K均值算法的缺点: K值是用户给定的,在进行数据处理前,K值未知,不同的K值得到的结果也不一样;对初始簇
转载
2023-06-21 22:18:00
136阅读
文章目录1. 标准C-Means1.1. 基本思路1.2. 样本在类间调整思路1.3. 具体步骤1.4. 初始化类的方法1.4.1 选择代表点1.4.2 初始类划分2. IOSDATA2.1 简介2.2 算法流程2.2.1 符号释义2.2.2 算法步骤2.2.3 分裂操作2.2.4 合并操作3. 基于样本与核相似度的动态聚类算法3.1 C-Means与IOSDATA面临的问题3.2 具体步骤3.
k-均值聚类算法一.聚类分析概述1.簇的定义2.常用的聚类算法二.K-均值聚类算法1.k-均值算法的python实现1.1 导入数据集1.2 构建距离计算函数1.3 编写自动生成rand质心的函数1.4 K-means聚类函数的实现 一.聚类分析概述聚类分析是无监督类机器学习算法中常用的一类,其目的是将数据划分成有意义或有用的组(也被称为簇)。组 内的对象相互之间是相似的(相关的),而不同组中的
转载
2024-03-18 19:36:03
78阅读
在《多元统计分析——聚类分析——K-均值聚类(K-中值、K-众数)》当中,我们理解了K-均值聚类的原理,也简单的介绍了K-均值聚类的两个应用场景:发现异常情况:如果不对数据进行任何形式的转换,只是经过中心标准化或级差标准化就进行快速聚类,会根据数据分布特征得到聚类结果。这种聚类会将极端数据单独聚为几类。这种方法适用于统计分析之前的异常值剔除,对异常行为的挖掘,比如监控银行账户是否有洗钱行为、监控P
转载
2023-08-14 20:12:27
83阅读
K均值聚类算法(K-means)聚类分析主要过程Kmeans.mkmeans1.mK_means2.mK_means.m表格资料全部资料 聚类分析主要过程(1)将数据展绘
% 随机生成3个中心以及标准差
s = rng(5,'v5normal');
mu = round((rand(3,2)-0.5)*19)+1;
sigma = round(rand(3,2)*40)/10+1;
X = [m
转载
2023-10-11 15:38:22
148阅读