数据仓库数据质量管理下面我们针对音乐数据中心数仓项目第四个业务:“统计地区营收情况业务”来说明数据质量如何进行管理。此业务数据质量管理重点放在 ODS层,EDS层(DWD层、DWS层)、DM层几个方面,每层数据校验的内容不一样,我们可以通过自己编写通用shell+Hive脚本或者使用质量监控工具Griffin来进行数据质量监控。一、“商户营收统计”业务1、商户营收统计数据分层信息以上业务涉及到的数
数据质量管理一、数据质量概述在大数据早期,做数据治理最主要的目的,就是为了提升数据质量,让报表、分析、应用更加准确。到今天,虽然数据治理的范畴扩大了很多,我们开始讲数据资产管理、知识图谱、自动化的数据治理等等概念,但是提升数据的质量,依然是数据治理最重要的目标之一。因为数据要能发挥其价值,关键在于其数据的质量的高低,高质量的数据是一切数据应用的基础。在数据质量不高的环境下,做数据分析可谓问题重重
为什么要数据治理在大数据各个企业数据积累过程中,很多公司都注重了数据的“量”,很少有公司关注数据的“质”,仿佛只要有了海量的数据就可以解决所有问题。真实的情况是公司有了海量的数据,如果不能够保证一定的数据质量不但不能够解决问题,反而还会制造更多的麻烦,例如:企业数据标准、命名规则不一致、企业数据口径不一致(数据统计结果不一致)、统计结果重要数据缺失等,以上问题都会给企业的经营管理和市场洞察带来极大
编译Atlas安装包一、Atlas2.1.0源码下载Atlas官网没有提供Atlas的安装包,需要下载Atlas的源码后编译安装,下载Atlas源码需要登录Atlas官网下载Atlas:https://atlas.apache.org/#/Downloads,选择2.1.0版本:
数据治理功能方面数据规模大并且成熟企业中数据治理通常包含以下几个功能方面: 数据治理包括主数据管理、元数据管理、数据标准管理、数据质量管理、数据集成管理、数据资产管理、数据安全管理、数据交换管理、数据生命周期管理方面。一、主数据管理主数据(Master Data
访问Hive有两种方式:HiveServer2和Hive Client,Hive Client需要Hive和Hadoop的jar包,配置环境。HiveServer2使得连接Hive的Client从Yarn和HDFS集群中独立出来,
Copyright © 2005-2024 51CTO.COM 版权所有 京ICP证060544号