//递归写法 long long FibonacciSeq(int n) { if (n < 2) { return n; } return FibonacciSeq(n - 1) + FibonacciSeq(n - 2); }
// 非递归(方法一) long long FibonacciSeq(int n) //可读性差,效率高 { long long f[3] = { 0, 1,n }; for (int i = 2; i <=n; i++) { f[2] = f[0] + f[1]; f[0] = f[1]; f[1] = f[2]; } return f[2]; }
//(方法二) long long FibonacciSeq(int n) { long long fib[1000] = { 0, 1 }; //这里不严谨,如果传的参数大于1000就不好了 for (int i = 2; i <= n; i++) { fib[i] = fib[i - 1] + fib[i - 2]; } long long ret = fib[n]; return ret; }
///// (方法二的另一种写法) long long FibonacciSeq( int n) { //这里一定要判断边界条件,否则传的参数为0时,程序会因触发断点而崩溃 if (n ==0) { return 0; } long long *fib=new long long[n+1]; fib[0] = 0; fib[1] = 1; for (int i = 2;i <=n; i++) { fib[i] = fib[i - 1] + fib[i - 2]; } long long ret = fib[n]; delete[] fib; return ret; }
///// (方法二的另一种写法) long long FibonacciSeq(int n) { if (n == 0) { return 0; } long long *fib = (long long *)malloc(sizeof(long long)*(n + 1)); fib[0] = 0; fib[1] = 1; for (int i = 2; i <= n; i++) { fib[i] = fib[i - 1] + fib[i - 2]; } long long ret = fib[n]; free(fib); return ret; }
超链接: new的越界访问